Условия непрерывности функции максимума: различия между версиями
Artem (обсуждение | вклад) |
Artem (обсуждение | вклад) |
||
Строка 7: | Строка 7: | ||
\(\mathcal{A} \in\) comp \(\mathbb{R}^n\) - непустой компакт в \(\mathbb{R}^n\). | \(\mathcal{A} \in\) comp \(\mathbb{R}^n\) - непустой компакт в \(\mathbb{R}^n\). | ||
− | За \(h(Z_1,Z_2) = max{ | + | За \(h(Z_1,Z_2) = max\{h_+(Z_1,Z_2), h_+(Z_2,Z_1)\}\) обозначим метрику Хаусдорфа. |
== Лемма о непрерывности опорной функции к многозначному отображению по обеим переменным == | == Лемма о непрерывности опорной функции к многозначному отображению по обеим переменным == |
Версия 22:37, 18 декабря 2021
Для того, чтобы исследовать условия непрерывности функции максимума, то есть, максимальной функции Гамильтона при зафиксированном управлении, нужно использовать многозначный анализ. Введем некоторые необходимые понятия.
Пусть дано многозначное отображение \(\mathcal{P}(\cdot)\). \(u(t)\) - селектор \(\mathcal{P}(\cdot)\), если \(u(t) \in \mathcal{P}(t), \forall t \in [t_0,t_1]\).
Функция Гамильтона - многозначное отображение, а функция максимума - ее селектор, максимизирующий функцию по управлению. Покажем, при каких условиях функция максимума непрерывна.
\(\mathcal{A} \in\) comp \(\mathbb{R}^n\) - непустой компакт в \(\mathbb{R}^n\).
За \(h(Z_1,Z_2) = max\{h_+(Z_1,Z_2), h_+(Z_2,Z_1)\}\) обозначим метрику Хаусдорфа.
Содержание
Лемма о непрерывности опорной функции к многозначному отображению по обеим переменным
Пусть \(\Z: V \Rightarrow\) conv \(\mathbb{R}^l, V \subseteq \mathbb{R}^k\). \(Z\) непрерывно на \(V\). Следовательно, \(\rho(l|Z(V))\) непрерывна на \((l,V) \in \mathbb{R}^l \times V\).
Доказательство леммы
Пусть \((l^0,v^0) \in \mathbb{R}^l \times V\). Покажем, что \(|\rho(l|Z(v)) - \rho(l^0|Z(v^0))| < \varepsilon\). \begin{equation} \rho(l|Z(v)) - \rho(l^0|Z(v^0)) = \rho(l|Z(v)) - \rho(l|Z(v^0)) = \rho(l|Z(v)) - \rho(l|Z(v^0)) + \rho(l|Z(v^0)) - \rho(l^0|Z(v^0)) \end{equation} 1) \(\rho(l|Z(v^0))\) выпукла по \(l \Rightarrow\) непрерывна по \(l \Rightarrow \forall \varepsilon > 0, \exists \delta > 0: \forall l, ||l - l^0|| < \delta \Rightarrow |\rho(l|Z(v^0)) - \rho(l^0|Z(v^0))| < \frac{\varepsilon}{2}\).
2) \(Z\) непрерывно как многозначное отображение \(\Rightarrow \forall \tilde\varepsilon > 0 \exists \tilde\delta(\tilde\varepsilon) > 0: \forall v \in \cup_\delta(v^0) \cap V, h(Z(v), Z(v^0)) < \tilde\varepsilon.\)
\begin{equation} h(Z(v), Z(v^0)) = \underset{ \end{equation}
\(Z\) непрерывна по \(v\) тогда и только тогда, когда \(|\rho(l|Z(v)) - \rho(l|Z(v^0))| < \tilde\varepsilon||l||, \forall l\).
Лемма о непрерывности функции максимума
Пусть
1) \(z: V \Rightarrow\) comp \(\mathbb{R}^l, V \subseteq \mathbb{R}^k, z\) непрерывна и равномерно ограничена на \(V\). То есть, \(V \in\) comp \(\mathbb{R}^k\).
2) \(g: V \times \mathbb{R}^l \Rightarrow \mathbb{R}, g\) непрерывна по \((v,z) \in V \times \mathbb{R}^l\).
Тогда \(H(v) = \underset{z \in \mathcal{Z} (v)}{max} \{g(v,z)\}\) - непрерывна на \(V\).
Доказательство леммы
\(\mathcal{Z}(v) \in \mathcal{B}_R(0) \).
\(g|_{V \times \mathcal{B}_R(0)}\) непрерывна, следовательно, по теореме Кантора, \(\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0\) такие, что \( \forall v', v'' \in V, ||v' - v''||< \delta, \forall z', z'' \in \mathcal{B}_{R(0)}, ||z'-z''|| < \delta\) верно: \(|g(v',z')-g(v'',z'')| < \varepsilon \).
Исследуем непрерывность \(H(v)\) при \(v = v^0 \in V\).
\(\mathcal{Z}\) непрерывна на V, следовательно, для данного \(\delta\) существует \(\tilde\delta(\delta(\varepsilon)) > 0\) такая, что \(\forall v \in V_{\tilde\delta}(v^0) \cap V, h(\mathcal{Z}(v), \mathcal{Z}(v^0)) < \delta\). Это верно тогда и только тогда, когда \[ \begin{cases} \mathcal{Z}(v) \subseteq \mathcal{Z}(v^0) + \delta\mathcal{B}_1(0),\\ \mathcal{Z}(v^0) \subseteq \mathcal{Z}(v) + \delta\mathcal{B}_1(0). \end{cases} \]
Выберем любое \(v\), такое, что \(||v - v^0|| < \delta\), и проверим, следует ли из этого \(|H(v)-H(v^0)| < \varepsilon\).
Пусть \(z^{0*} \in Argmax \{g(v^0,z^0) | z^0 \in \mathcal{Z}(v^0)\}, z^{*} \in\) Argmax \(\{g(v,z) | z \in \mathcal{Z}(v)\}, \) \[ \begin{cases} z^{*} \in \mathcal{Z}(v) \subseteq \mathcal{Z}(v^0) + \delta\mathcal{B}_1(0),\\ z^{0*} \in \mathcal{Z}(v^0) \subseteq \mathcal{Z}(v) + \delta\mathcal{B}_1(0). \end{cases} \]
Из этого следует, что: \[ \begin{cases} \exists z' \in \mathcal{Z}(v^0): ||z^* - z'|| < \delta,\\ \exists z'' \in \mathcal{Z}(v): ||z^{*0} - z'|| < \delta. \end{cases} \]
Тогда: \begin{equation} H(v) - H(v^0) = \underset{z \in \mathcal{Z} (v)}{max}g(v,z) - \underset{z^0 \in \mathcal{Z} (v^0)}{max}g(v^0,z^0) \leqslant g(v,z^*) - g(v^0, z') < \varepsilon. \end{equation}
При этом, \begin{equation} H(v^0) - H(v) \leqslant g(v^0,z^{0*}) - g(v, z'') < \varepsilon. \end{equation}
Следовательно, \(H\) непрерывна. Лемма доказана.