Геометрическая разность двух эллипсоидов. Внутренние и внешние оценки: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 5: Строка 5:
 
     \rho (l | \varepsilon_{1} \dot{—} \varepsilon_{2}) = conv( \rho(l | \varepsilon_{1}) - \rho (l | \varepsilon_{2} ))
 
     \rho (l | \varepsilon_{1} \dot{—} \varepsilon_{2}) = conv( \rho(l | \varepsilon_{1}) - \rho (l | \varepsilon_{2} ))
 
\end{gather*}
 
\end{gather*}
Будем оценивать эту разность эллипсоидами.
 
 
== Внутренние эллипсоидальные оценки ==
 
== Внутренние эллипсоидальные оценки ==
 +
Будем оценивать разность эллипсоидами.
 
\begin{gather*}
 
\begin{gather*}
 
     \varepsilon_{1} = \varepsilon (0, Q_{1}); \\
 
     \varepsilon_{1} = \varepsilon (0, Q_{1}); \\

Версия 01:56, 7 декабря 2022

В этой статье будут рассмотрены геометрическая разность двух эллипсоидов и ее внутренние и внешние оценки.

Определение

Разностью двух эллипсоидов будем называть $$\varepsilon_{1} \dot{—} \varepsilon_{2}$$ \begin{gather*} \rho (l | \varepsilon_{1} \dot{—} \varepsilon_{2}) = conv( \rho(l | \varepsilon_{1}) - \rho (l | \varepsilon_{2} )) \end{gather*}

Внутренние эллипсоидальные оценки

Будем оценивать разность эллипсоидами. \begin{gather*} \varepsilon_{1} = \varepsilon (0, Q_{1}); \\ \varepsilon_{2} = \varepsilon (0, Q_{2}); \\ \varepsilon_{-} \displaystyle = \varepsilon (0, Q_{-}), \, где \, Q_{-} = (p_{1} - p_{1}) ( \frac{Q_{1}}{p_{1}} - \frac{Q_{2}}{p_{2}} ); \end{gather*} Оценим опорной функцией: \begin{gather*} \rho^{2} ( l | \varepsilon_{-} ) \displaystyle = \langle l, Q_{1}l \rangle + \langle l, Q_{2}l \rangle - \frac{p_{2}}{p_{1}} \langle l, Q_{1}l \rangle - \frac{p_{1}}{p_{2}} \langle l, Q_{2}l \rangle \end{gather*}