Дискретные системы с запаздыванием: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
 
(не показано 10 промежуточных версий этого же участника)
Строка 9: Строка 9:
  
  
Для определения системы необходимо ввести $$(T + 1)$$ исходных данных: $$u_{0}, u_{1}, ..., u_{T}$$.
+
Для определения конкретной траектории системы необходимо задать начальные значения: $$u_{0}, u_{1}, ..., u_{T}$$.
 
 
  
 
== Преобразование модели ==
 
== Преобразование модели ==
Строка 34: Строка 33:
 
== Неподвижная точка системы с запаздыванием ==
 
== Неподвижная точка системы с запаздыванием ==
  
Неподвижной точкой системы с запаздыванием называются решения системы
+
[https://sawiki.cs.msu.ru/index.php/%D0%9D%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D1%8B%D0%B5_%D1%82%D0%BE%D1%87%D0%BA%D0%B8_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B Неподвижной точкой] $$(v_{1}, ..., v_{T+1}) = (v^{*}, ..., v^{*})$$ системы с запаздыванием называются решения уравнения
 
\begin{equation*}
 
\begin{equation*}
v^{*} = f(v^{*}, ..., v^{*}), v^{*} \in \mathbb{R}
+
v^{*} = f(v^{*}, ..., v^{*}), v^{*} \in \mathbb{R}.
 
\end{equation*}
 
\end{equation*}
  
Строка 55: Строка 54:
 
\end{equation*}
 
\end{equation*}
  
'''Теорема 1.''' Характеристический многочлен матрицы $$А$$ имеет вид  
+
'''Теорема 1.''' Характеристический многочлен матрицы $$A$$ имеет вид  
$$\sum\limits_{i = 0}^{t} a_{1(i+1)} \lambda^{T-i} - \lambda^{T+1} = 0.$$
+
$$\sum\limits_{i = 0}^{T} a_{1(i+1)} \lambda^{T-i} - \lambda^{T+1} = 0.$$
  
 
''Доказательство.'' $$\\$$
 
''Доказательство.'' $$\\$$
Строка 90: Строка 89:
 
Раскладывая матрицу по последнему столбцу:
 
Раскладывая матрицу по последнему столбцу:
 
\begin{equation*}
 
\begin{equation*}
\vert A - \lambda E \vert = -\lambda \vert A_{n} - \lambda E \vert + a_{1(n+1)}\cdot 1\cdot = \sum\limits_{i = 0}^{t} a_{1(i+1)} \lambda^{T-i} - \lambda^{T+1}.
+
\vert A - \lambda E \vert = -\lambda \vert A_{n} - \lambda E \vert + a_{1(n+1)}\cdot 1 = \sum\limits_{i = 0}^{n} a_{1(i+1)} \lambda^{n-i} - \lambda^{n+1}.
 
\end{equation*}
 
\end{equation*}
 +
Таким образом, шаг индукции доказан.
  
 
$$\blacksquare$$
 
$$\blacksquare$$
Строка 101: Строка 101:
 
=== Обобщенная система Рикера ===
 
=== Обобщенная система Рикера ===
  
 +
Пусть численность популяции определяется уравнением Рикера с запаздыванием:
 
\begin{equation*}
 
\begin{equation*}
 
u_{t+1} = u_{t} e^{r(1 - u_{t-1})}, r > 0.
 
u_{t+1} = u_{t} e^{r(1 - u_{t-1})}, r > 0.
 
\end{equation*}
 
\end{equation*}
  
 +
В этом случае рассматривается относительная численность, так как используется отношение действительной численности и максимально возможной для данной экологической системы.
 
Данное уравнение можно переписать в следующем виде:
 
Данное уравнение можно переписать в следующем виде:
  
Строка 122: Строка 124:
  
 
Найдем матрицу $$A$$ для данной модели:
 
Найдем матрицу $$A$$ для данной модели:
[[Файл:Stable.jpg|мини|Устойчивая неподвижная точка при $$r = 0.7.$$ ]]
+
[[Файл:Stable.jpg|мини|Устойчивая неподвижная точка системы при значении параметра $$r = 0.7 < 1$$. Точки сосредотачиваются около $$(1; 1)$$. ]]
 
\begin{equation*}
 
\begin{equation*}
 
A = \left(
 
A = \left(
Строка 143: Строка 145:
 
\end{equation*}
 
\end{equation*}
  
Характеристический многочлен данной матрицы равен $$\lambda(e^{r} - \lambda) = 0 \leftrightarrow \lambda_{1} = 0, \lambda_{2} = e^{r}.$$ Так как $$\lambda_{2} \geq 1$$, то точка является неустойчивой.
+
Характеристический многочлен данной матрицы равен $$\lambda(e^{r} - \lambda) = 0 \leftrightarrow \lambda_{1} = 0, \lambda_{2} = e^{r}.$$ Так как $$\lambda_{2} \geqslant 1$$, то точка является неустойчивой.
[[Файл:Unstable1.jpg|мини|Неустойчивая неподвижная точка при $$r = 1.3.$$]]
+
[[Файл:Unstable1.jpg|мини|Неустойчивая неподвижная точка системы при значении параметра $$r = 1.3 \geqslant 1$$. Точки разбросаны внутри замкнутой кривой.]]
 
Аналогично исследуем точку $$v_{2}^{*}$$:
 
Аналогично исследуем точку $$v_{2}^{*}$$:
  
Строка 159: Строка 161:
  
 
\begin{equation*}
 
\begin{equation*}
\lambda_{1,2} = \dfrac{\pm \sqrt{1-4r} + 1}{2}, r \leq \dfrac{1}{4},\\
+
\lambda_{1,2} = \dfrac{\pm \sqrt{1-4r} + 1}{2}, r \leqslant \dfrac{1}{4},\\
 
  \lambda_{1,2} = \sqrt{r} e^{\pm i \arctan{\sqrt{4r-1}}}, r > \dfrac{1}{4}.
 
  \lambda_{1,2} = \sqrt{r} e^{\pm i \arctan{\sqrt{4r-1}}}, r > \dfrac{1}{4}.
 
\end{equation*}
 
\end{equation*}
  
При $$0< r < \dfrac{1}{4}$$ корни характеристического многочлена вещественны и по модулю меньше $$1$$. Следовательно, точка является устойчивой. Если $$r \geq \dfrac{1}{4}$$, то корни характеристического многочлена являются комплексно сопряженными числами, причем $$\vert \lambda_{1} \vert \cdot \vert \lambda_{1} \vert = r$$. Тогда при $$\dfrac{1}{4} < r < 1$$ точка устойчива, так как $$\vert \lambda_{1} \vert < 1, \vert \lambda_{2} \vert < 1.$$ При $$r > 1$$ точка является неустойчивой.
+
При $$0< r < \dfrac{1}{4}$$ корни характеристического многочлена вещественны и по модулю меньше $$1$$. Следовательно, точка является устойчивой. Если $$r \geqslant \dfrac{1}{4}$$, то корни характеристического многочлена являются комплексно сопряженными числами, причем $$\vert \lambda_{1} \vert \cdot \vert \lambda_{1} \vert = r$$. Тогда при $$\dfrac{1}{4} < r < 1$$ точка устойчива, так как $$\vert \lambda_{1} \vert < 1, \vert \lambda_{2} \vert < 1.$$ При $$r > 1$$ точка является неустойчивой.
  
 
==Список литературы==
 
==Список литературы==

Текущая версия на 21:45, 17 октября 2023

Модель с запаздыванием

Динамической моделью с дискретным временем с учетом эффекта запаздывания называется модель следующего вида:

\begin{equation*} u_{t+1} = f(u_{t}, u_{t-1}, ..., u_{t - T}), F: \mathbb{R}^{(T+1)} \rightarrow \mathbb{R}, T \in \mathbb{N}, T \geqslant 1. \end{equation*}


Для определения конкретной траектории системы необходимо задать начальные значения: $$u_{0}, u_{1}, ..., u_{T}$$.

Преобразование модели

Модель с запаздыванием можно переписать в виде дискретной системы из $$(T + 1)$$-го уравнения. Для этого введем следующие обозначения: \begin{equation*} v_{1}(t) = u(t), v_{2}(t) = u(t-1), ..., v_{T + 1}(t) = u(t-T). \end{equation*}

Тогда получаем:

\begin{equation*} \begin{cases} v_{1}(t + 1) = f(v_{1}(t), v_{2}(t),..., v_{T+1}(t)),\\ v_{2}(t+1) = v_{1}(t),\\ ...\\ v_{T+1}(t+1) = v_{T}(t). \end{cases} \end{equation*}

Таким образом, системы с запаздыванием являются частным случаем многомерных дискретных систем.

Неподвижная точка системы с запаздыванием

Неподвижной точкой $$(v_{1}, ..., v_{T+1}) = (v^{*}, ..., v^{*})$$ системы с запаздыванием называются решения уравнения \begin{equation*} v^{*} = f(v^{*}, ..., v^{*}), v^{*} \in \mathbb{R}. \end{equation*}

Устойчивость неподвижных точек

Рассмотрим уравнение $$v^{t+ 1} = f(v^{t}_{1}, v^{t}_{2},..., v^{t}_{T+1})$$. Для исследования неподвижных точек удобно воспользоваться линеаризацией и рассмотреть матрицу

\begin{equation*} A = \Vert a_{ij} \Vert_{(T+1)\times (T+1)} = \left( \begin{array}{ccccc} \dfrac{\partial f}{\partial v_{1}} & \dfrac{\partial f}{\partial v_{2}} & \ldots & \dfrac{\partial f}{\partial v_{T}} & \dfrac{\partial f}{\partial v_{T+1}}\\ 1 & 0 & \ldots & 0 & 0\\ 0 & 1 & \ldots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \ldots & 1 & 0\\ \end{array} \right) \end{equation*}

Теорема 1. Характеристический многочлен матрицы $$A$$ имеет вид $$\sum\limits_{i = 0}^{T} a_{1(i+1)} \lambda^{T-i} - \lambda^{T+1} = 0.$$

Доказательство. $$\\$$ Докажем по индукции. База индукции:

\begin{equation*} A = \left( \begin{array}{cc} a_{11} & a_{12}\\ 1 & 0\\ \end{array} \right) \end{equation*}

\begin{equation*} \left| A - \lambda E \right| = \lambda^{2} - a_{11} \lambda -a_{12} = 0 \Leftrightarrow a_{11} \lambda^{1} + a_{12} \lambda^{0} - \lambda^{2} = 0. \end{equation*}

Сделаем переход от $$n$$ к $$(n+1)$$:

\begin{equation*} \vert A - \lambda E \vert = \left| \begin{array}{ccccc} a_{11} - \lambda & a_{12} & \ldots & a_{1n} & a_{1(n+1)}\\ 1 & -\lambda & \ldots & 0 & 0\\ 0 & 1 & \ldots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \ldots & 1 & -\lambda\\ \end{array} \right| \end{equation*}

Раскладывая матрицу по последнему столбцу: \begin{equation*} \vert A - \lambda E \vert = -\lambda \vert A_{n} - \lambda E \vert + a_{1(n+1)}\cdot 1 = \sum\limits_{i = 0}^{n} a_{1(i+1)} \lambda^{n-i} - \lambda^{n+1}. \end{equation*} Таким образом, шаг индукции доказан.

$$\blacksquare$$

Следствие 1. Собственные значения матрицы $$A$$ являются корнями характеристического многочлена. Если все $$\vert \lambda_{i} \vert < 1$$, то точка является асимптотически устойчивой.

Примеры биологических моделей

Обобщенная система Рикера

Пусть численность популяции определяется уравнением Рикера с запаздыванием: \begin{equation*} u_{t+1} = u_{t} e^{r(1 - u_{t-1})}, r > 0. \end{equation*}

В этом случае рассматривается относительная численность, так как используется отношение действительной численности и максимально возможной для данной экологической системы. Данное уравнение можно переписать в следующем виде:

\begin{equation*} \begin{cases} v_{1}(t+1) = v_{1}(t) e^{r(1 - v_{2}(t))},\\ v_{2}(t+1) = v_{1}(t). \end{cases} \end{equation*}

Неподвижные точки системы определяются из уравнения: \begin{equation*} v^{*} = v^{*} e^{r(1 - v^{*})}. \end{equation*}

Решением данной системы являются точки $$v_{1}^{*} = (0,0), v_{2}^{*} = (1,1).\\$$

Найдем матрицу $$A$$ для данной модели:

Устойчивая неподвижная точка системы при значении параметра $$r = 0.7 < 1$$. Точки сосредотачиваются около $$(1; 1)$$.

\begin{equation*} A = \left( \begin{array}{cc} e^{r(1 - v_{2})} & -rv_{1}v_{2} e^{r(1 - v_{2})}\\ 1 & 0\\ \end{array} \right) \end{equation*}

Подставим $$v_{1}^{*}$$:

\begin{equation*} A = \left( \begin{array}{cc} e^{r} & 0\\ 1 & 0\\ \end{array} \right) \end{equation*}

Характеристический многочлен данной матрицы равен $$\lambda(e^{r} - \lambda) = 0 \leftrightarrow \lambda_{1} = 0, \lambda_{2} = e^{r}.$$ Так как $$\lambda_{2} \geqslant 1$$, то точка является неустойчивой.

Неустойчивая неподвижная точка системы при значении параметра $$r = 1.3 \geqslant 1$$. Точки разбросаны внутри замкнутой кривой.

Аналогично исследуем точку $$v_{2}^{*}$$:

\begin{equation*} A = \left( \begin{array}{cc} 1 & -r\\ 1 & 0\\ \end{array} \right) \end{equation*}

Характеристический многочлен данной матрицы равен $$-\lambda(1 - \lambda) + r = 0 \leftrightarrow \lambda^{2} - \lambda + r = 0$$. Решением уравнения являются точки:

\begin{equation*} \lambda_{1,2} = \dfrac{\pm \sqrt{1-4r} + 1}{2}, r \leqslant \dfrac{1}{4},\\ \lambda_{1,2} = \sqrt{r} e^{\pm i \arctan{\sqrt{4r-1}}}, r > \dfrac{1}{4}. \end{equation*}

При $$0< r < \dfrac{1}{4}$$ корни характеристического многочлена вещественны и по модулю меньше $$1$$. Следовательно, точка является устойчивой. Если $$r \geqslant \dfrac{1}{4}$$, то корни характеристического многочлена являются комплексно сопряженными числами, причем $$\vert \lambda_{1} \vert \cdot \vert \lambda_{1} \vert = r$$. Тогда при $$\dfrac{1}{4} < r < 1$$ точка устойчива, так как $$\vert \lambda_{1} \vert < 1, \vert \lambda_{2} \vert < 1.$$ При $$r > 1$$ точка является неустойчивой.

Список литературы

1. Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и модели биологии. М.: ФИЗМАТЛИТ, 2010.

2. Абрамова В.В. "Лекции по динамическим системам и биоматематике", 2023.