Системы множеств: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 5: Строка 5:
 
* '''Определение'''. ''Объединением'' множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C = A \cup B$$), состоящее из элементов, которые принадлежат хотя бы одному из множеств $$A$$ или $$B$$.  
 
* '''Определение'''. ''Объединением'' множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C = A \cup B$$), состоящее из элементов, которые принадлежат хотя бы одному из множеств $$A$$ или $$B$$.  
  
Множество $$C$$ называется ''объединением'' множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcup_{\alpha \in I} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат хотя бы одному из множеств $$A_\alpha$$, т.е.
+
Множество $$C$$ называется ''объединением'' множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcup_{\alpha \in I}^{} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат хотя бы одному из множеств $$A_\alpha$$, т.е.
 
\[
 
\[
 
x \in C \Longleftrightarrow \exists \alpha \in I: x \in A_\alpha .
 
x \in C \Longleftrightarrow \exists \alpha \in I: x \in A_\alpha .
Строка 12: Строка 12:
 
* '''Определение'''. ''Пересечением'' множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C= A \cap B)$$, состоящее из элементов, которые принадлежат каждому из множеств $$A$$ и $$B$$.  
 
* '''Определение'''. ''Пересечением'' множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C= A \cap B)$$, состоящее из элементов, которые принадлежат каждому из множеств $$A$$ и $$B$$.  
  
Множество $$C$$ называется ''пересечением'' множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcap_{\alpha \in I} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат каждому множеству $$A_\alpha$$, т.е.
+
Множество $$C$$ называется ''пересечением'' множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcap_{\alpha \in I}^{} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат каждому множеству $$A_\alpha$$, т.е.
 
\[
 
\[
 
x \in C \Longleftrightarrow \forall \alpha \in I: x \in A_\alpha .
 
x \in C \Longleftrightarrow \forall \alpha \in I: x \in A_\alpha .
Строка 31: Строка 31:
  
 
* '''Определение'''. ''Симметрической разностью'' множеств $$A$$ и $$B$$ называется множество $$A \Delta B=$$ $$(A \backslash B) \cup(B \backslash A)$$.
 
* '''Определение'''. ''Симметрической разностью'' множеств $$A$$ и $$B$$ называется множество $$A \Delta B=$$ $$(A \backslash B) \cup(B \backslash A)$$.
 +
== Кольцо ==
 +
* '''Определение'''.  Непустая система множеств $$K$$ называется ''кольцом'', если для любых $$A,\ B \in K$$:
 +
\[1) A \Delta B \in K,\]
 +
 +
\[2) A \cap B \in K.\]
 +
 +
Так как для любых $$A$$ и $$B$$: $$A \cup B=(A \triangle B) \cup(A \cap B)$$ и $$A \backslash B=A \triangle(A \cap B)$$,то из $$A, B \in K$$ вытекает также принадлежность к $$K$$ множеств $$A \cup B$$ и $$A \backslash B$$. Таким образом, ''кольцо'' множеств есть система множеств, замкнутая относительно операций пересечения и симметрической разности. Кольцо замкнуто и по отношению к образованию любых конечных сумм и пересечений вида
 +
\[
 +
C=\bigcup_{k=1}^n A_k, \quad D=\bigcap_{k=1}^n A_k
 +
\]
 +
 +
Любое кольцо содержит пустое множество $$\varnothing$$, так как $$A \backslash A=\varnothing$$. Система, состоящая только из пустого множества, представляет собой наименьшее возможное кольцо множеств.
 +
 +
* '''Определение'''. Множество $$E$$ называется ''единицей'' системы множеств $$\mathfrak{S}$$, если оно принадлежит $$\mathfrak{S}$$ и если для любого $$A \in \mathfrak{S}$$ имеет место равенство:
 +
\[
 +
A \cap E=A.
 +
\]
 +
 +
Таким образом, единица системы множеств $$\mathfrak{S}$$ есть не что иное, как максимальное множество этой системы, содержащее все другие входящие в $$\mathfrak{S}$$ множества.
 +
 +
* '''Определение'''. Кольцо множеств с единицей называется ''алгеброй'' множеств.
 +
 +
===Примеры===
 +
1. Для любого множества $$A$$ система всех его подмножеств представляет собой алгебру множеств с единицей $$E=A$$.
 +
 +
2. Для любого непустого множества $$A$$ система, состоящая из множества $$A$$ и пустого множества $$\varnothing$$, образует алгебру множеств с единицей $$E=A$$.
 +
 +
3. Система всех конечных подмножеств произвольного множества $$A$$ представляет собой кольцо множеств. Это кольцо будет алгеброй в том и только том случае, когда множество $$A$$ конечно.
 +
 +
4. Система всех ограниченных подмножеств числовой прямой является кольцом множеств, не содержащим единицы.

Версия 22:46, 3 ноября 2023

Аннотация

В этой статье будут рассматриваются системы множеств, т.е. те множества, элементы которых сами представляют собой какие-либо множества. Мотивация изучения этих объектов состоит в том, что они служат фундаментом при изложении общей теории меры.

Операции над множествами

  • Определение. Объединением множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C = A \cup B$$), состоящее из элементов, которые принадлежат хотя бы одному из множеств $$A$$ или $$B$$.

Множество $$C$$ называется объединением множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcup_{\alpha \in I}^{} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат хотя бы одному из множеств $$A_\alpha$$, т.е. \[ x \in C \Longleftrightarrow \exists \alpha \in I: x \in A_\alpha . \]

  • Определение. Пересечением множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C= A \cap B)$$, состоящее из элементов, которые принадлежат каждому из множеств $$A$$ и $$B$$.

Множество $$C$$ называется пересечением множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcap_{\alpha \in I}^{} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат каждому множеству $$A_\alpha$$, т.е. \[ x \in C \Longleftrightarrow \forall \alpha \in I: x \in A_\alpha . \]

Операции объединения и пересечения множеств обладают следующими свойствами:

1) коммутативность: \[A \cup B=B \cup A,\quad A \cap B=B \cap A ;\]

2) ассоциативность: \[(A \cup B) \cup C=A \cup(B \cup C),\quad (A \cap B) \cap C=A \cap(B \cap C);\]

3) дистрибутивность: \[A \cup(B \cap C)=(A \cup B) \cap(A \cup C),\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C).\]

  • Определение. Разностью множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$A \backslash B$$ ), состоящее из элементов множества $$A$$, не принадлежащих множеству $$B$$.
  • Определение. Симметрической разностью множеств $$A$$ и $$B$$ называется множество $$A \Delta B=$$ $$(A \backslash B) \cup(B \backslash A)$$.

Кольцо

  • Определение. Непустая система множеств $$K$$ называется кольцом, если для любых $$A,\ B \in K$$:

\[1) A \Delta B \in K,\]

\[2) A \cap B \in K.\]

Так как для любых $$A$$ и $$B$$: $$A \cup B=(A \triangle B) \cup(A \cap B)$$ и $$A \backslash B=A \triangle(A \cap B)$$,то из $$A, B \in K$$ вытекает также принадлежность к $$K$$ множеств $$A \cup B$$ и $$A \backslash B$$. Таким образом, кольцо множеств есть система множеств, замкнутая относительно операций пересечения и симметрической разности. Кольцо замкнуто и по отношению к образованию любых конечных сумм и пересечений вида \[ C=\bigcup_{k=1}^n A_k, \quad D=\bigcap_{k=1}^n A_k \]

Любое кольцо содержит пустое множество $$\varnothing$$, так как $$A \backslash A=\varnothing$$. Система, состоящая только из пустого множества, представляет собой наименьшее возможное кольцо множеств.

  • Определение. Множество $$E$$ называется единицей системы множеств $$\mathfrak{S}$$, если оно принадлежит $$\mathfrak{S}$$ и если для любого $$A \in \mathfrak{S}$$ имеет место равенство:

\[ A \cap E=A. \]

Таким образом, единица системы множеств $$\mathfrak{S}$$ есть не что иное, как максимальное множество этой системы, содержащее все другие входящие в $$\mathfrak{S}$$ множества.

  • Определение. Кольцо множеств с единицей называется алгеброй множеств.

Примеры

1. Для любого множества $$A$$ система всех его подмножеств представляет собой алгебру множеств с единицей $$E=A$$.

2. Для любого непустого множества $$A$$ система, состоящая из множества $$A$$ и пустого множества $$\varnothing$$, образует алгебру множеств с единицей $$E=A$$.

3. Система всех конечных подмножеств произвольного множества $$A$$ представляет собой кольцо множеств. Это кольцо будет алгеброй в том и только том случае, когда множество $$A$$ конечно.

4. Система всех ограниченных подмножеств числовой прямой является кольцом множеств, не содержащим единицы.