Пространства интегрируемых функций: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 12: Строка 12:
 
\end{equation*}
 
\end{equation*}
  
===Полнота пространства ''L''<sub>''1''</sub>===
+
==Полнота пространства ''L''<sub>''1''</sub>==
 +
Введем в пространстве $$L_{1}(X, \mu)$$ расстояние (метрику):
 +
\begin{equation*}
 +
    \rho (f, g) = \Vert f-g \Vert_{L_{1}}, \forall f(x), g(x) \in L_{1}(X, \mu).
 +
\end{equation*}
  
 +
=== Теорема о полноте пространства $$L_{1}$$===
 +
Пространство $$L_{1}(X, \mu)$$ является полным, то есть любая фундаментальная последовательность является сходящейся.
 +
 +
'''Доказательство.'''
 +
Рассмотрим $$\lbrace f_{n}(x) \rbrace$$ --- фундаментальная последовательность функций из $$L_{1}$$:
 +
 +
\begin{equation*}
 +
    \Vert f_{n}-f_{m} \Vert \rightarrow 0, \text{ при } n,m \rightarrow \infty.
 +
\end{equation*}
 +
 +
Тогда можно выделить такую подпоследовательность $$\lbrace f_{n_{k}}\rbrace$$, что:
 +
\begin{equation}\label{eq1}
 +
    \Vert f_{n_{k}}-f_{n_{k+1}} \Vert = \int\limits_{X} \vert f_{n_{k}}-f_{n_{k+1}} \vert d\mu < \frac{1}{2^{k}}.
 +
\end{equation}
 +
 +
Рассмотрим новую последовательность функций $$\lbrace g_{m} \rbrace$$, которые определяются следующим образом:
 +
 +
\begin{equation*}
 +
    g_{m} (x) = \vert f_{n_{1}} (x) \vert + \vert f_{n_{2}} (x) - f_{n_{1}} (x) \vert + ... +  \vert f_{n_{m}} (x) - f_{n_{m-1}} (x) \vert.
 +
\end{equation*}
 +
 +
Полученные функции $$g_{m}(x)$$ являются интегрируемыми, $$g_{m+1}(x) > g_{m}(x), \forall x \in X$$, и в силу (\ref{eq1}) справедливо:
 +
\begin{equation*}
 +
    \int\limits_{X} g_{m}(x) d\mu \leqslant \Vert f_{n_{1}} \Vert + \frac{1}{2} + \frac{1}{4} + ... \leqslant \Vert f_{n_{1}} \Vert + 1.
 +
\end{equation*}
 +
 +
Используя [[теорему Леви]], получаем сходимость почти всюду ряда
 +
\begin{equation*}
 +
    \vert f_{n_{1}} (x) \vert + \vert f_{n_{2}} (x) - f_{n_{1}} (x) \vert + \vert f_{n_{3}} (x) - f_{n_{2}} (x) \vert + ...
 +
\end{equation*}
 +
 +
Тогда почти всюду сходится к некоторой функции и ряд без модулей
 +
\begin{equation*}
 +
    f_{n_{1}} (x) + ( f_{n_{2}} (x) - f_{n_{1}} (x) ) + ( f_{n_{3}} (x) - f_{n_{2}} (x) ) + ... \Rightarrow \exists f(x) = \lim\limits_{k \rightarrow \infty} f_{n_{k}} (x).
 +
\end{equation*}
 +
 +
Докажем теперь, что подпоследовательность $$f_{n_{k}}$$ сходится в смысле метрики в $$L_{1}$$ (в среднем) к той же функции $$f(x)$$
  
 
= Пространство ''L''<sub>''p''</sub> =
 
= Пространство ''L''<sub>''p''</sub> =

Версия 16:53, 23 ноября 2024

Пространство L1

Определение

Пусть $$X$$ --- некоторое пространство с полной мерой $$\mu$$. Пространство $$L_{1}(X, \mu)$$ определяется как пространство измеримых функций, интегрируемых по Лебегу: \begin{equation*} L_{1}(X, \mu) = \left\lbrace f(x), x \in X: \exists \int\limits_{X} f(x)d \mu < \infty, \exists \int\limits_{X} \vert f(x) \vert d \mu < \infty \right\rbrace. \end{equation*}

Норма в данном пространстве определяется следующим образом:

\begin{equation*} \Vert f \Vert = \int\limits_{X} \vert f(x) \vert d \mu, \forall f(x) \in L_{1}(X, \mu). \end{equation*}

Полнота пространства L1

Введем в пространстве $$L_{1}(X, \mu)$$ расстояние (метрику): \begin{equation*} \rho (f, g) = \Vert f-g \Vert_{L_{1}}, \forall f(x), g(x) \in L_{1}(X, \mu). \end{equation*}

Теорема о полноте пространства $$L_{1}$$

Пространство $$L_{1}(X, \mu)$$ является полным, то есть любая фундаментальная последовательность является сходящейся.

Доказательство. Рассмотрим $$\lbrace f_{n}(x) \rbrace$$ --- фундаментальная последовательность функций из $$L_{1}$$:

\begin{equation*} \Vert f_{n}-f_{m} \Vert \rightarrow 0, \text{ при } n,m \rightarrow \infty. \end{equation*}

Тогда можно выделить такую подпоследовательность $$\lbrace f_{n_{k}}\rbrace$$, что: \begin{equation}\label{eq1} \Vert f_{n_{k}}-f_{n_{k+1}} \Vert = \int\limits_{X} \vert f_{n_{k}}-f_{n_{k+1}} \vert d\mu < \frac{1}{2^{k}}. \end{equation}

Рассмотрим новую последовательность функций $$\lbrace g_{m} \rbrace$$, которые определяются следующим образом:

\begin{equation*} g_{m} (x) = \vert f_{n_{1}} (x) \vert + \vert f_{n_{2}} (x) - f_{n_{1}} (x) \vert + ... + \vert f_{n_{m}} (x) - f_{n_{m-1}} (x) \vert. \end{equation*}

Полученные функции $$g_{m}(x)$$ являются интегрируемыми, $$g_{m+1}(x) > g_{m}(x), \forall x \in X$$, и в силу (\ref{eq1}) справедливо: \begin{equation*} \int\limits_{X} g_{m}(x) d\mu \leqslant \Vert f_{n_{1}} \Vert + \frac{1}{2} + \frac{1}{4} + ... \leqslant \Vert f_{n_{1}} \Vert + 1. \end{equation*}

Используя теорему Леви, получаем сходимость почти всюду ряда \begin{equation*} \vert f_{n_{1}} (x) \vert + \vert f_{n_{2}} (x) - f_{n_{1}} (x) \vert + \vert f_{n_{3}} (x) - f_{n_{2}} (x) \vert + ... \end{equation*}

Тогда почти всюду сходится к некоторой функции и ряд без модулей \begin{equation*} f_{n_{1}} (x) + ( f_{n_{2}} (x) - f_{n_{1}} (x) ) + ( f_{n_{3}} (x) - f_{n_{2}} (x) ) + ... \Rightarrow \exists f(x) = \lim\limits_{k \rightarrow \infty} f_{n_{k}} (x). \end{equation*}

Докажем теперь, что подпоследовательность $$f_{n_{k}}$$ сходится в смысле метрики в $$L_{1}$$ (в среднем) к той же функции $$f(x)$$

Пространство Lp

Определение

Пусть \(p \geqslant 1\). Рассмотрим множество функций \(L_p(X, \mu)\), интегрируемых в степени \(p\) (без модуля и с модулем).

\[\|f\|_{L_p} = \left(\int\limits_X |f(x)|^p d\mu\right)^{1/p}, \quad p > 1.\]

Свойства о пространстве Lp

Замечание. Для доказательства неравенства треугольника потребуется неравенство Гёльдера для интегралов и неравенство Минковского для интегралов.

Теорема (о неравенстве Гёльдера для интегралов)

Для любых функций \(f(x) \in L_p(X, \mu)\) и \(g(x) \in L_q(X, \mu)\), где \(p,q > 1\) и \(\frac{1}{p} + \frac{1}{q} = 1\), справедливо неравенство:

\[\left|\int\limits_X f(x)g(x)d\mu\right| \leqslant \|f\|_{L_p} \cdot \|g\|_{L_q}\]

Доказательство. Разобьём доказательство на несколько шагов:

1. Тривиальный случай: Если \(\|f\|_{L_p} = 0\) или \(\|g\|_{L_q} = 0\), то неравенство очевидно выполняется, так как левая часть будет равна нулю.

2. Основной случай: Для случая, когда нормы отличны от нуля, введем вспомогательные функции:

\[F = \frac{|f|}{\|f\|_{L_p}}, \quad G = \frac{|g|}{\|g\|_{L_q}}\]

Используя предыдущую лемму, получаем:

\[\int\limits_X FGd\mu \leqslant \int\limits_X \frac{F^p}{p}d\mu + \int\limits_X \frac{G^q}{q}d\mu\]

Подставляя определения F и G, получаем: \[\int\limits_X \frac{F^p}{p}d\mu = \frac{1}{p}, \quad \int\limits_X \frac{G^q}{q}d\mu = \frac{1}{q}\]

Следовательно: \[\int\limits_X FGd\mu \leqslant \frac{1}{p} + \frac{1}{q} = 1\]

Возвращаясь к исходным функциям:

\[\left|\int\limits_X fgd\mu\right| \leqslant \int\limits_X |fg|d\mu = \|f\|_{L_p} \cdot \|g\|_{L_q} \cdot \int\limits_X FGd\mu \leqslant \|f\|_{L_p} \cdot \|g\|_{L_q}\]

Что и требовалось доказать.

Теорема (о неравенстве Минковского для интегралов)

Для измеримых функций \(f, g \in L_p(X,\mu)\), где \(p \geqslant 1\), справедливо неравенство:

\[\|f + g\|_{L_p} \leqslant \|f\|_{L_p} + \|g\|_{L_p}\]

то есть:

\[\left(\int\limits_X |f(x) + g(x)|^p d\mu\right)^{1/p} \leqslant \left(\int\limits_X |f(x)|^p d\mu\right)^{1/p} + \left(\int\limits_X |g(x)|^p d\mu\right)^{1/p}\]

Замечание. Неравенство Минковского является аналогом неравенства треугольника для \(L_p\)-норм и показывает, что пространство \(L_p\) является нормированным.

Доказательство.

Сначала докажем неравенство:

\[|f + g|^p \leqslant (|f| + |g|)^p \leqslant (2\max\{|f|, |g|\})^p \leqslant 2^p(|f|^p + |g|^p)\]

Следовательно, \(|f + g|^p\) интегрируема, а значит \(f + g \in L_p(X, \mu)\).

\[\|f + g\|^p_{L_p} = \int\limits_X |f + g|^p d\mu \leqslant \int\limits_X |f + g|^{p-1}(|f| + |g|)d\mu = \int\limits_X |f| \cdot |f + g|^{p-1}d\mu + \int\limits_X |g| \cdot |f + g|^{p-1}d\mu\]

Применяя неравенство Гёльдера с показателями \(p\) и \(q\), где \(\frac{1}{p} + \frac{1}{q} = 1\), получаем:

\[\|f + g\|^p_{L_p} \leqslant \|f\|_{L_p} \cdot \left(\int\limits_X |f + g|^{(p-1)q}d\mu\right)^{1/q} + \|g\|_{L_p} \cdot \left(\int\limits_X |f + g|^{(p-1)q}d\mu\right)^{1/q}\]

Поскольку \((p-1)q = p\), имеем:

\[\|f + g\|^p_{L_p} \leqslant \|f\|_{L_p} \cdot \|f + g\|^{p/q}_{L_p} + \|g\|_{L_p} \cdot \|f + g\|^{p/q}_{L_p}\]

\[\Rightarrow \|f + g\|^{p-p/q}_{L_p} = \|f + g\|_{L_p} \leqslant \|f\|_{L_p} + \|g\|_{L_p}\]

Что и требовалось доказать.

Свойство

1. (Неотрицательность и определенность): \[\|f\|_{L_p} \geqslant 0, \forall f; \|f\|_{L_p} = 0 \Leftrightarrow f(x) = 0\] почти всюду

2. (Однородность): \[\|cf\|_{L_p} = |c| \cdot \|f\|_{L_p}\]

3. (Неравенство треугольника): \[\|f + g\|_{L_p} \leqslant \|f\|_{L_p} + \|g\|_{L_p}\]

Доказательства свойств

1. Доказательство неотрицательности и определенности:

а) Неотрицательность \(\|f\|_{L_p} \geqslant 0\) следует из определения: \[\|f\|_{L_p} = \left(\int\limits_X |f(x)|^p d\mu\right)^{1/p}\] Так как \(|f(x)|^p \geqslant 0\) и мера \(\mu\) неотрицательна, то интеграл неотрицателен, и после возведения в степень \(1/p\) результат также неотрицателен.

б) Для доказательства второй части:

  • "\(\Rightarrow\)": Если \(\|f\|_{L_p} = 0\), то \(\int\limits_X |f(x)|^p d\mu = 0\). Поскольку подынтегральная функция неотрицательна, это возможно только если \(f(x) = 0\) почти всюду.
  • "\(\Leftarrow\)": Если \(f(x) = 0\) почти всюду, то очевидно \(\|f\|_{L_p} = 0\).

2. Доказательство однородности:

\[\|cf\|_{L_p} = \left(\int\limits_X |cf(x)|^p d\mu\right)^{1/p} = \left(\int\limits_X |c|^p|f(x)|^p d\mu\right)^{1/p} = |c|\left(\int\limits_X |f(x)|^p d\mu\right)^{1/p} = |c| \cdot \|f\|_{L_p}\]

3. Доказательство неравенства треугольника:

Это неравенство уже доказано в теореме Минковского (Теорема 11.5). Напомним основные шаги:

а) Сначала доказывается, что \(|f + g|^p \leqslant (|f| + |g|)^p \leqslant 2^p(|f|^p + |g|^p)\)

б) Затем используется неравенство Гёльдера: \[\|f + g\|^p_{L_p} = \int\limits_X |f + g|^p d\mu \leqslant \int\limits_X |f + g|^{p-1}(|f| + |g|)d\mu\]

в) После применения неравенства Гёльдера и соответствующих преобразований получаем: \[\|f + g\|_{L_p} \leqslant \|f\|_{L_p} + \|g\|_{L_p}\]

Замечание. Эти три свойства показывают, что \(\|\cdot\|_{L_p}\) действительно является нормой на пространстве \(L_p(X,\mu)\). ∎