Многомерная система Лотки-Вольтерры. Теорема об отсутствии циклов: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 26: Строка 26:
  
 
== Теорема об отсутствии в ней предельных циклов. ==
 
== Теорема об отсутствии в ней предельных циклов. ==
 +
Рассмотрим динамическую систему
 +
\begin{eqnarray}
 +
\dot{u} & = & f(u), \quad u \in U \subseteq R^{n}, \quad f: U \rightarrow \mathbb{R}^{n} .
 +
\end{eqnarray}
 +
Решение u(t) задачи (7.1) называется периодическим с периодом T > 0,
 +
\begin{eqnarray}
 +
u(t+T) & = & u(t)
 +
\end{eqnarray}
  
 
== Система Лотки-Вольттеры при $$n > 2$$. ==
 
== Система Лотки-Вольттеры при $$n > 2$$. ==

Версия 00:27, 15 декабря 2024

Общая система Лотки-Вольтерры.

Система Лотки-Вольтерры на плоскости \begin{array}{c} \dot{u}=u\left(r_{1}+a_{11} u+a_{12} v\right) \\ \dot{v}=v\left(r_{2}+a_{21} u+a_{22} v\right) \end{array} не может иметь предельных циклов в \mathbb{R}_{+}^{2}

Доказательство:

Пусть \gamma замкнутая траектория. По свойству вращения внутри есть особенная точка. (0,0) точка изолированная.

Другая особенная точка определяется

\begin{equation*} \begin{cases} a_{11} u_{1}+a_{12} u_{2}=-ч_{1} \\ a_{21} u_{1}+a_{22} L_{2}=-ч_{2} \end{cases} \end{equation*}

\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix} \neq 0

Теорема об отсутствии в ней предельных циклов.

Рассмотрим динамическую систему \begin{eqnarray} \dot{u} & = & f(u), \quad u \in U \subseteq R^{n}, \quad f: U \rightarrow \mathbb{R}^{n} . \end{eqnarray} Решение u(t) задачи (7.1) называется периодическим с периодом T > 0, \begin{eqnarray} u(t+T) & = & u(t) \end{eqnarray}

Система Лотки-Вольттеры при $$n > 2$$.

$$u_1(t), u_2(t), ... u_n(t)$$ -- численности популяций, $$n > 2$$.

Общий вид многомерной системы выглядит таким образом:

\begin{equation} \dot{u}_i(t) = u_i(t) \cdot \left(r_i + \sum_{j=1}^n a_{ij} u_j(t) \right), \quad i = 1,2 ... n \end{equation}

Значения коэффициентов прироста популяции $$r_i$$:

  • $$r_i > 0$$: $$r_i$$ — коэффициент рождаемости.
  • $$r_i < 0$$: $$r_i$$ — коэффициент смертности.


Коэффициенты взаимодействия $$a_{ij}$$:

  • $$a_{ii} \leq 0$$: коэффициент внутривидовой конкуренции. При $$a_{ii} = 0$$ внутривидовой конкуренции нет, при $$a_{ii} < 0$$ -- есть.

Коэффициенты взаимодействия $$a_{ij}$$: коэффициент, определяющий взаимодействие $$i$$-го вида с $$j$$-ым:

  • $$a_{ij} = 0$$: нет взаимодействия.
  • $$a_{ij} < 0$$: $$j$$-й вид негативно влияет на $$i$$-й.
  • $$a_{ij} > 0$$: $$i$$-й вид "потребляет" $$j$$-й вид.

Модель пищевой цепи (частный случай системы Лотки-Вольтерра)

Если число взаимодействующих популяций больше двух, то анализ моделей Лотки–Вольтерры становится более сложным. Ограничимся ситуацией, когда модель имеет некоторый специальный вид, который облегчает анализ.

Рассмотрим экологическую систему, состоящую из $$n$$ популяций. Первая популяция (вид-автотроф) является жертвой для второй (вид-гетеротроф), которая в свою очередь жертва для третьей и т.д., вплоть до n-ой популяции, которая является хищником по отношению к $$(n-1)$$-у виду. Потоки вещества схематически представлены на следующей диаграмме:

\begin{equation*} S_1 \longrightarrow S_2 \longrightarrow \dots \longrightarrow S_n \end{equation*}

Такие экологические сообщества называются пищевыми цепями (известно, что в природе существуют пищевые цепи, содержащие до шести видов).

Принимая во внимание внутривидовую конкуренцию, получим следующую систему:

\begin{equation} \begin{aligned} \dot{u}_1 &= u_1(r_1 - a_{11}u_1 - a_{12}u_2), \\ \dot{u}_2 &= u_2(-r_2 + a_{21}u_1 - a_{22}u_2 - a_{23}u_3), \\ &\ \vdots \\ \dot{u}_i &= u_i(-r_i + a_{i,i-1}u_{i-1} - a_{ii}u_i - a_{i,i+1}u_{i+1}), \quad i = 2, \dots, n-1, \\ \dot{u}_n &= u_n(-r_n + a_{n,n-1}u_{n-1} - a_{nn}u_n). \end{aligned} \end{equation}

где все $$r_i, a_{ij} > 0$$. Случай n = 2 представляет собой модель хищник–жертва с учетом внутривидовой конкуренции [1].

Теорема об устойчивости положения равновесия:

Если $$\exists \, \mathbf{p} \in \mathbb{R}_+^n$$ — внутреннее положение равновесия, то:

  • Если $$a_{i,i} > 0$$, то $$\mathbf{p}$$ — является предельным множеством (т.е. асимптотически устойчивым положением равновесия).
  • Если $$a_{i,i} = 0$$, то у системы (2) существует ПИ, который задает замкнутые траектории.
Доказательство:

Сделаем замену в системе (2) с $$w_i(u)$$: \begin{equation*} w_1(u) = r_1 - a_{1,1} u_1 - a_{1,2} u_2, \\ \end{equation*} \begin{equation*} w_i(u) = -r_i + a_{i, i-1} u_{i-1} - a_{i,i} u_i - a_{i, i+1} u_{i+1}, \quad i = 2, \dots, n-1, \\ \end{equation*} \begin{equation*} w_n(u) = r_n + a_{n, n-1} u_{n-1} - a_{n,n} u_n. \end{equation*}

Пусть $$\mathbf{p}$$ — решение системы:

\begin{equation*} w_i(u) = 0, \, i = 1, 2, ... n. \end{equation*}

Тогда: \begin{equation*} \begin{cases} a_{1,1} p_1 + a_{1,2} p_2 = r_1, \\ a_{i, i-1} p_{i-1} - a_{i,i} p_i - a_{i, i+1} p_{i+1} = r_i, \quad i = 2, \dots, n-1, \\ a_{n, n-1} p_{n-1} - a_{n,n} p_n = r_n. \end{cases} \end{equation*}

Воспользуемся теоремой Ла-Салля. Рассмотрим функцию: \begin{equation*} V (u) = \sum_{i=1}^n с_i \left(u_i - p_i ln u_i \right), \end{equation*} где $$с_i > 0$$ — константы.

Вычислим производную $$V(\mathbf{u})$$ вдоль траекторий системы: \begin{equation*} L_t V = \sum_{i=1}^n с_i \left(\frac{u_i - p_i}{u_i}\right) \dot{u}_i = \sum_{i=1}^n с_i \left(u_i - p_i\right) w_i(u_i). \end{equation*}

После подстановки $$w_i$$: \begin{equation*} L_t V = \sum_{i=1}^n с_1 (u_i - p_i) (a_{i, i-1} (u_{i-1} - p_{i-1}) -a_{i, j}(u_i - p_i)- a_{i, i+1} (u_{i+1} - p_{i+1}) + c_1 (u_1 - p_1)(-a_{1, 1} (u_1 - p_1) - a_{1,2} (u_2 - p_2) ) + c_n(u_n - p_n)(a_{n, n-1}(u_{n-1} - p_{n-1}) - a_{n,n} (u_n - p_n)) . \end{equation*}

Сделаем замену $$v_i = n_i - p_i$$: \begin{equation*} L_t V = - \sum_{i=1}^n c_i a_{i,i} v_i^2 + \sum_{i=1}^{n-1} (-c_i a_{i, i+1} (u_{i+1} - p_{i+1})(u_i - p_i)) + c_{i+1} a_{i+1, i} (u_i - p_i)(n_{i+1} - p_{i+1}). \end{equation*}

\begin{equation*} L_t V = -\sum_{i=1}^n c_i a_{i,i} v_i^2 + \sum_{i=1}^{n-1} v_i v_{i+1}(c_{i+1} a_{i+1, i} - c_i a_{i, i+1}). \end{equation*}

Поскольку имеется свобода в выборе неотрицательных постоянных $$c_i$$, потребуем выполнения следующего равенства: \begin{equation*} \frac{c_{i+1}}{c_i}= \frac{a_{i, i+1}}{a_{i+1, i}}, i = 1, 2 ... n-1. \end{equation*}

Отметим, что все постоянные $$c_i > 0$$. Следовательно, $$L_t V = -\sum_{i=1}^n c_i a_{ii} (u_i - p_i)^2 \leq 0$$, причем $$L_tV = 0$$ только в точке $$p$$.

Исследуем функцию $$V(u)$$. Положение равновесия $$p$$ – единственная критическая точка функции $$V(u)$$, причем

\begin{equation*} \frac{\partial V}{\partial u_i}\bigg|_{u=p} = 0, \quad \frac{\partial^2 V}{\partial u_i^2}\bigg|_{u=p} > 0, \quad \frac{\partial^2 V}{\partial u_i \partial u_j}\bigg|_{u=p} = 0, \; i \neq j. \end{equation*}

Другими словами, функция $$V(u)$$ выпуклая, с единственной точкой минимума $$p$$. По теореме Ляпунова положение равновесия $$p$$ асимптотически устойчиво и, по крайней мере, представляет собой $$\omega$$-предельное множество для начальных условий из некоторой окрестности $$p$$. С другой стороны функция $$V(u)$$ определена на всем множестве $$\mathbb{R}^n_+$$, множество нулей $$L_tV$$ состоит из единственной точки $$p$$, что означает, что $$p$$ глобально асимптотически устойчива, и все орбиты из $$\text{int}\,\mathbb{R}^n_+$$ к ней сходятся.

Если все $$a_{ii} = 0$$, то $$V(u)$$ — первый интеграл системы (2). Так как траектории системы принадлежат поверхностям уровня $$V(u)$$, то в окрестности $$p$$ они лежат на ограниченных поверхностях $$V(u) = \text{const}$$, что и означает устойчивость по Ляпунову.

Тогда:

  1. При $$ a_{i, i} > 0$$ верно $$ L_t V \leq 0$$, причем $$ \{ u \;|\; V(u) = 0 \} = \{ u = p \}$$, а $$p$$ - асимптотически устойчивое положение равновесия.
  1. При $$ a_{i, i} = 0 $$ верно $$ L_t V = 0$$, причем $$ V(u)$$ - выпуклая, $$u - p$$ - её единственный минимум. Линии уровня $$ \{ n \;|\; V(u) = C \} $$ - замкнуты, $$ \Rightarrow $$ ПИ задает замкнутые траектории $$ \Rightarrow u = p $$ устойчивое положение равновесия.


Список литературы

1. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии 2011.

2. Абрамова В.В. Лекции по курсу "Динамические системы и биоматематика", 2024.