Принцип максимума для задачи быстродействия: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
 
(не показано 135 промежуточных версий этого же участника)
Строка 1: Строка 1:
== Общая постановка линейной задачи быстродействия ==
+
= Случай линейной системы =
 +
 
 +
=== Общая постановка линейной задачи быстродействия ===
  
 
В самом общем случае линейная задача быстродействия имеет следующую постановку:
 
В самом общем случае линейная задача быстродействия имеет следующую постановку:
Строка 8: Строка 10:
 
     x, f \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n\times n}, \quad u \in \mathbb{R}^{m}, \quad B \in \mathbb{R}^{n\times m}, \\
 
     x, f \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n\times n}, \quad u \in \mathbb{R}^{m}, \quad B \in \mathbb{R}^{n\times m}, \\
 
     A(\cdot), B{(\cdot)}, f(\cdot) \in C\left[t_{0}, t_{1} \right]\\
 
     A(\cdot), B{(\cdot)}, f(\cdot) \in C\left[t_{0}, t_{1} \right]\\
     u(t) \in \mathcal{P}(t), \quad \forall t\\
+
     u(t) \in \mathcal{P}(t)\in\text{conv}\mathbb{R}^m, \quad \forall t\\
 
     x(t_{0}) \in \mathcal{X}_{0} \in \text{conv}\;\mathbb{R}^{n}, \quad x(t_{1}) \in \mathcal{X}_{1} \in \text{conv} \mathbb{R}^{n}\\
 
     x(t_{0}) \in \mathcal{X}_{0} \in \text{conv}\;\mathbb{R}^{n}, \quad x(t_{1}) \in \mathcal{X}_{1} \in \text{conv} \mathbb{R}^{n}\\
 
     J = t_{1} - t_{0} \rightarrow \min
 
     J = t_{1} - t_{0} \rightarrow \min
Строка 14: Строка 16:
 
\]
 
\]
  
Здесь \(\mathcal{X}_{0}\) -- начальное множество значений фазового вектора, \(\mathcal{X}_{1}\) -- целевое множество значений фазового вектора, \(\mathcal{P}(\cdot)\) -- область управления. Считаем, что допустимое управление принадлежит классу кусочно-непрерывных функций.
+
Здесь \(\mathcal{X}_{0}\) начальное множество значений фазового вектора, \(\mathcal{X}_{1}\) целевое множество значений фазового вектора, \(\mathcal{P}(\cdot)\) область управления, \(\mathcal{P}(\cdot)\) непрерывно как многозначное отображение. Считаем, что допустимое управление принадлежит классу кусочно-непрерывных функций.
  
== Принцип максимума Понтрягина ==  
+
=== Принцип максимума Понтрягина для линейной задачи быстродействия ===
  
 
Необходимым условием оптимальности управления является принцип максимума Понтрягина. Сформулируем его для линейной задачи быстродействия, поставленной в общем виде.
 
Необходимым условием оптимальности управления является принцип максимума Понтрягина. Сформулируем его для линейной задачи быстродействия, поставленной в общем виде.
  
 
==== Теорема (Принцип максимума Понтрягина) ====
 
==== Теорема (Принцип максимума Понтрягина) ====
Пусть \( \{ x^{*}(\cdot), \; u^{*}(\cdot) \} \) --- оптимальная пара для линейной задачи быстродействия. Тогда существует непрерывная функция \( \psi(t) \), определенная при \( t \geqslant t_{0} \), являющаяся нетривиальным решением системы
+
Пусть \( \{ x^{*}(\cdot), \; u^{*}(\cdot) \} \) оптимальная пара для линейной задачи быстродействия. Тогда существует непрерывная функция \( \psi(t) \), определенная при \( t \geqslant t_{0} \), являющаяся нетривиальным решением системы
  
 
\[
 
\[
Строка 35: Строка 37:
 
#\(\langle-\psi(t_{1}), x^{*}(t_{1})\rangle  = \rho(-\psi(t_{1})| \mathcal{X}_{1}) \quad\)(условие трансверсальности на правом конце).
 
#\(\langle-\psi(t_{1}), x^{*}(t_{1})\rangle  = \rho(-\psi(t_{1})| \mathcal{X}_{1}) \quad\)(условие трансверсальности на правом конце).
  
== Общая постановка нелинейной задачи быстродействия для автономной системы ==
+
= Случай нелинейной системы =
  
Пусть имеется управляемый процесс, описываемый системой обыкновенных дифференциальных уравнений:
+
== Общая задача оптимального управления ==
 +
 
 +
=== Постановка задачи оптимального управления в общем виде ===
 +
 
 +
Сформулируем задачу оптимального управления для автономной нелинейной системы в общем виде.
 +
 
 +
Пусть имеется управляемый процесс, описываемый автономной системой обыкновенных дифференциальных уравнений:
  
 
\[
 
\[
Строка 51: Строка 59:
  
 
\[
 
\[
\begin{cases}
 
 
     \dot x = f(x, u), \\
 
     \dot x = f(x, u), \\
\end{cases}
 
 
\]
 
\]
  
где \(x = (x^{1}, \ldots , x^{n})', \;f = (f^{1}, \ldots , f^{n})', \; u=(u^{1}, \ldots, u^{m})'\). Здесь \(t\) - время, \(x^1, \,\ldots\,, x^n\) - фазовые координаты управляемого объекта, определяющие его состояние в каждый момент времени \(t\), и \(u^1, \,\ldots\,, u^m\) - параметры управления, определяющие ход процесса.
+
где \(x = (x^{1}, \ldots , x^{n})', \;f = (f^{1}, \ldots , f^{n})', \; u=(u^{1}, \ldots, u^{m})'\). Здесь \(t\) время, \(x^1, \,\ldots\,, x^n\) фазовые координаты управляемого объекта, определяющие его состояние в каждый момент времени \(t\), и \(u^1, \,\ldots\,, u^m\) параметры управления, определяющие ход процесса.
 +
 
 +
Функции \( f^{i}(x, u), \; i=\overline{1, n} \), предполагаются непрерывными по совокупности переменных \( (x, \,u) \) и непрерывно дифференцируемыми по \( x \). Заметим, что данная система автономна, то есть правые ее части не зависят явно от времени \( t \). 
 +
 
 +
Класс допустимых управлений состоит из кусочно-непрерывных функций \(u(t)\) со значениями в некотором множестве \(U \subset \mathbb{R}^m \), называемом областью управления. В фазовом пространстве заданы начальное множество \( S_{0} \) и целевое множество \( S_{1} \), являющиеся гладкими многообразиями. Фиксирован начальный момент времени \(t_0\).
 +
 
 +
Пусть, далее, задана еще одна функция \(f^{0}(x, u)\), непрерывная по совокупности переменных \((x, u)\) и непрерывно дифференцируемая по \(x\).
 +
 
 +
Требуется найти допустимое управление \(u(t)\), которое переводит фазовую точку из некоторого (заранее не заданного) положения \(x_{0} \in S_{0}\) в момент времени \(t_0\) в некоторое (заранее не заданное) положение \(x_{1} \in S_{1}\) в момент времени \(t_1\), и на котором функционал
 +
 
 +
\[
 +
    J\left( u(\cdot) \right) = \int\limits_{t_{0}}^{t_{1}} f^{0}(x(t), u(t)) dt
 +
\]
 +
 
 +
достигает своего минимального значения (здесь \(t_1\) – конечный момент времени, не фиксирован).
 +
 
 +
=== Принцип максимума Понтрягина для общей задачи оптимального управления ===
  
 +
Сформулируем принцип максимума Понтрягина для общей задачи оптимального управления, введя предварительно несколько определений и обозначений.
 +
 +
==== Определение 1 ====
 +
Функция \( \mathcal{H}(\tilde\psi, x, u)=\mathcal{H}(\psi_{0}, \psi, x, u) = \psi_{0}f^{0}(x,u)+\langle\psi,f(x,u)\rangle \) называется функцией Гамильтона–Понтрягина. Здесь \( \ \tilde\psi = (\psi_0, \psi)' = (\psi_0, \psi_{1}, \ldots, \psi_{n})' \) – сопряженные переменные.
 +
 +
==== Определение 2 ====
 +
Пусть \( \psi:\left[t_{0},\;t_{1}\right] \rightarrow \mathbb{R}^{n} \). Сопряженной системой называется следующая система обыкновенных дифференциальных уравнений:
 +
 +
\[
 +
    \frac{d\psi}{dt} = -\frac{\partial\mathcal{H}}{\partial x}.
 +
\]
 
    
 
    
  Класс допустимых управлений состоит из кусочно-непрерывных функций \(u(t)\) со значениями в некотором множестве \(U\), называемом областью управления. В фазовом пространстве заданы начальное множество \(S_{0}\) и целевое множество \(S_{1}\), являющиеся гладкими многообразиями. Фиксированы начальный и конечный моменты времени \(t_0\) и \(t_1\).
+
   
 +
Обозначим \( \mathcal{M}(\psi_{0}, \psi, x) = \sup\limits_{u(\cdot)} \mathcal{H}(\psi_{0}, \psi, x, u) \).
 +
 
 +
Обозначим через \(T^0_{x_0}\) и \(T^1_{x_1}\) касательные плоскости, проведенные к многообразиям \(S_{0}\) и \(S_{1}\) в точках \( x_0 \in S_{0}\) и \( x_1 \in S_{1}\) соответственно.
 +
 
 +
Справедлива следующая теорема.
 +
 
 +
==== Теорема (Принцип максимума Понтрягина) ====
 +
Пусть \(u(t), \; t_{0} \leqslant t \leqslant t_{1}\), – допустимое управление, переводящее фазовую точку из некоторого положения  \(x_{0} \in S_{0}\) в положение \(x_{1} \in S_{1}\), а \(x(t)\) – соответствующая траектория. Для того, чтобы пара \(\{x(\cdot), u(\cdot)\}\) была оптимальной для задачи оптимального управления с подвижными концами, необходимо существование такой непрерывной и отличной от тождественного нуля вектор-функции \(\tilde\psi:\left[t_0,\;t_1\right] \rightarrow \mathbb{R}^{n+1}\), \(\tilde\psi(t) = \left(\psi_0(t), \; \psi(t)\right) \), удовлетворяющей сопряженной системе, что
 +
# \( \mathcal{H}(\psi_{0}, \psi, x, u) = \mathcal{M}(\psi_{0}, \psi, x) \equiv 0 \), при любом \(t \in \left[t_{0}, t_{1}\right]\);
 +
# \( \psi_{0} = \text{const} \leqslant 0;\)
 +
# \( \psi(t_{0}) \perp T^0_{x_0}\) (Условие трансверсальности на левом конце);
 +
# \( \psi(t_{1}) \perp T^1_{x_1}\) (Условие трансверсальности на правом конце).
 +
 
 +
== Нелинейная задача быстродействия ==
 +
=== Постановка нелинейной задачи быстродействия ===
 +
Нелинейная задача быстродействия представляет собой общую задачу оптимального управления, в которой функционал \( J \) имеет следующий вид:
 +
 
 +
\[
 +
    J = t_1 - t_0.
 +
\]
 +
 
 +
Другими словами, это общая задача ОУ, в которой \(f^0(x,u)\equiv 1\).
 +
 
 +
=== Принцип максимума Понтрягина для нелинейной задачи быстродействия ===
 +
Выведем теперь Принцип максимума Понтрягина для оптимальности по быстродействию. Для этого в принципе максимума для общей задачи ОУ следует положить \(f^0(x,u)\equiv 1\). Функция \( \mathcal{H} \) принимает в этом случае следующий вид:
 +
 
 +
\[
 +
    \mathcal{H} = \psi_0 + \sum_{i=1}^{n} \psi_i f^i(x,u).
 +
\]
 +
 
 +
Имея \( n \)-мерный вектор \(\psi=(\psi_1,\ldots,\psi_n) \) и вводя функцию
 +
 
 +
\[
 +
    H(\psi, x, u) = \langle\psi, f\rangle = \sum_{i=1}^{n} \psi_i f^i(x,u)
 +
\]
 +
 
 +
мы можем записать сопряженную систему в следующем модифицированном виде:
 +
 
 +
\[
 +
    \frac{d\psi}{dt}=-\frac{\partial H}{\partial x}.
 +
\]
 +
 
 +
При фиксированных значениях \(\psi\) и \(x\) функция \(H\) становится функцией параметра \(u\); верхнюю грань значений этой функции мы обозначим через \(M(\psi, x)\):
 +
 
 +
\[
 +
    M(\psi,x)=\sup_{u \in U} H(\psi, x, u).
 +
\]
 +
 
 +
В силу соотношения \(H(\psi, x, u) = \mathcal{H}(\psi, x, u) - \psi_0\) мы получаем
 +
 
 +
\[
 +
    M(\psi,x)=\mathcal{M}(\psi, x) - \psi_0,
 +
\]
 +
 
 +
и потому условия 1 и 2 принципа максимума для общей задачи ОУ принимают теперь вид
 +
 
 +
\[
 +
    H(\psi(t),x(t),u(t)) = M(\psi(t), x(t)) = -\psi_0 \geqslant 0.
 +
\]
 +
 
 +
Таким образом, мы получаем следующую теорему.
 +
 
 +
==== Теорема (Принцип максимума Понтрягина для нелинейной задачи быстродействия) ====
 +
Пусть \(u(t), \; t_{0} \leqslant t \leqslant t_{1}\), – допустимое управление, переводящее фазовую точку из некоторого положения  \(x_{0} \in S_{0}\) в положение \(x_{1} \in S_{1}\), а \(x(t)\) – соответствующая траектория. Для того, чтобы пара \(\{x(\cdot), u(\cdot)\}\) была оптимальной для задачи быстродействия, необходимо существование такой непрерывной и отличной от тождественного нуля вектор-функции \(\psi:\left[t_0,\;t_1\right] \rightarrow \mathbb{R}^{n}\), удовлетворяющей модифицированной сопряженной системе, что
 +
# \( H(\psi, x, u) = M(\psi, x) = \text{const} \geqslant 0 \), при любом \(t \in \left[t_{0}, t_{1}\right]\);
 +
# \( \psi(t_{0}) \perp T^0_{x_0}\) (Условие трансверсальности на левом конце);
 +
# \( \psi(t_{1}) \perp T^1_{x_1}\) (Условие трансверсальности на правом конце).
 +
 
 +
== Задача быстродействия в случае неавтономной системы с закрепленными концами ==
 +
 
 +
Рассмотрим задачу быстродействия в случае, когда функции \(f^i\) явно зависят от времени. Ограничимся рассмотрением задачи с закрепленными концами. Закон движения объекта принимает вид:
 +
 
 +
\[
 +
    \frac{dx^i}{dt} = f^i(x,u,t), \quad i = \overline{1, n}.
 +
\]
 +
 
 +
Для решения этой задачи введем еще одно вспомогательное неизвестное \( x^{n+1} \), изменяющееся по закону
 +
 
 +
\[
 +
    \frac{dx^{n+1}}{dt} = 1, \quad x^{n+1}(t_0)=t_0.
 +
\]
  
Пусть, далее, задана еще одна функция \(f^{0}(x, u)\), непрерывная по совокупности переменных \((x, u)\) и непрерывно дифференцируемая по \(x\).
+
Очевидно, что мы будем иметь \(x^{n+1}(t)\equiv t\). С помощью неизвестного \(x^{n+1}\) основная система может быть записана в следующем автономном виде:
 +
 
 +
\[
 +
    \frac{dx^i}{dt} = f^i(x,u,x^{n+1}), i = \overline{1, n},
 +
\]
 +
\[
 +
    \frac{dx^{n+1}}{dt}=1\equiv f^{n+1}(x, u, x^{n+1}).
 +
\]
  
Требуется найти допустимое управление \(u(t)\), которое на сегменте \(\left[t_0,\,t_1\right]\) переводит фазовую точку из некоторого (заранее не заданного) положения \(x_{0} \in S_{0}) в некоторое (заранее не заданное) положение \(x_{1} \in S_{1}\), и на котором функционал
+
При этом мы должны найти оптимальную по быстродействию траекторию, соединяющую точку \((x_0^1, \ldots, x_0^n, t_0)\) с некоторой точкой прямой \(S_1\), проходящей через точку \((x_1^1, \ldots, x_1^n, 0)\) параллельно оси \(x^{n+1}\). Таким образом, приходим к задаче с закрепленным левым концом и подвижным правым.
 +
Напишем принцип максимума и условие трансверсальности для этой новой задачи ОУ, обозначая соответствующую ей функцию Гамильтона-Понтрягина через \(H^*(\psi, \psi_{n+1}, x, x^{n+1}, u)\), а величину \( \sup_{u \in U} H^*(\psi, \psi_{n+1}, x, x^{n+1}, u)\) через \(M^*(\psi, \psi_{n+1}, x, x^{n+1})\) (здесь \(\psi=(\psi_1,\ldots,\psi_n)\), \(x=(x^1,\ldots,x^n)\)). Имеем:
  
 
\[
 
\[
\begin{cases}
+
    H^*(\psi, \psi_{n+1}, x, x^{n+1}, u)  = \psi_1f^1(x, u, x^{n+1}) + \ldots + \psi_nf^n(x,u,x^{n+1}) + \psi_{n+1}\cdot 1,
    J = \int\limits_{t_{0}}^{t_{1}} f^{0}(x(t), u(t)) dt \\
+
\]
\end{cases}
+
\[
 +
    M^*(\psi, \psi_{n+1}, x, x^{n+1}) = \sup_{u \in U} H^*(\psi, \psi_{n+1}, x, x^{n+1}, u).
 
\]
 
\]
  
достигает своего минимального значения.
+
Таким образом, учитывая соотношение \(x^{n+1}=t\), мы можем написать \(H^*=H+\psi_{n+1}, \; M^*=M+\psi_{n+1}\), и поэтому соотношение \( H^*=M^*=-\psi_0=\text{const}\geqslant 0 \), выполняющееся вдоль оптимальной траектории, принимает вид \( H=M=-\psi_0-\psi_{n+1}(t) \). Последнее выражение, вообще говоря, уже не является константным, и его знак неизвестен.
 +
 
 +
Наконец, условие трансверсальности в правом конце траектории показывает, что прямая \(S_1\) (параллельная оси \(x^{n+1}\)) ортогональна вектору \( \psi_1(t_1), \ldots, \psi_{n+1}(t_1) \). Иначе говоря, \( \psi_{n+1}(t_1) = 0 \). Вместе с соотношением \( \frac{d\psi_{n+1}}{dt} = -\sum_{i=0}^{n+1} \frac{\partial f^i}{\partial x^{n+1}} \psi_i = -\sum_{i=0}^{n} \frac{\partial f^i}{\partial t} \psi_i \), полученным из сопряженной системы, это даст
 +
 
 +
\[
 +
M(\psi(t), x(t), t) = \int_{t_1}^{t} \sum_{i=0}^{n} \frac{\partial f^i (x(\tau), u(\tau), \tau)}{\partial \tau} \psi_i(\tau) d\tau -\psi_0 \geqslant \int_{t_1}^{t} \sum_{i=0}^{n} \frac{\partial f^i (x(\tau), u(\tau), \tau)}{\partial \tau} \psi_i(\tau) d\tau
 +
\] 
 +
 
 +
Итак, получаем следующую теорему.
 +
 
 +
==== Теорема (Принцип максимума Понтрягина для нелинейной задачи быстродействия, случай неавтономной системы) ====
 +
Пусть \(u(t), \; t_{0} \leqslant t \leqslant t_{1}\), – допустимое управление, переводящее фазовую точку из некоторого положения  \(x_{0} \in S_{0}\) в положение \(x_{1} \in S_{1}\), а \(x(t)\) – соответствующая траектория. Для того, чтобы пара \(\{x(\cdot), u(\cdot)\}\) была оптимальной для задачи быстродействия с неавтономной системой и закрепленными концами, необходимо существование такой непрерывной и отличной от тождественного нуля вектор-функции \(\psi:\left[t_0,\;t_1\right] \rightarrow \mathbb{R}^{n}\), удовлетворяющей модифицированной сопряженной системе, что
 +
# \( H(\psi, x, u) = M(\psi, x) \), при любом \(t \in \left[t_{0}, t_{1}\right]\);
 +
# \( M(\psi(t), x(t), t) \geqslant \int_{t_1}^{t} \sum_{i=0}^{n} \frac{\partial f^i (x(\tau), u(\tau), \tau)}{\partial \tau} \psi_i(\tau) d\tau \).
 +
(Здесь всюду \(x=x(t)=(x^1(t),\ldots,x^n(t))\), \(\psi=\psi(t)=(\psi_1(t),\ldots,\psi_n(t))\) ).
 +
 
 +
Оказывается далее, что разность между левой и правой частями соотношения 2 постоянна, так что проверку соотношения 2 достаточно произвести в момент времени \(t_1: M(\psi(t_1), x(t_1), t_1) \geqslant 0 \).
 +
 
 +
= Список литературы =
 +
 
 +
* Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф. Мищенко. Математическая теория оптимальных процессов. МОСКВА «НАУКА»‎. 1983.
 +
* Ю.А. Комаров. Лекции по курсу "Оптимальное управление (линейные системы)"; лекции по курсу "Оптимальное управление (нелинейные системы)". 2020-2021.

Текущая версия на 00:47, 16 декабря 2021

Содержание

Случай линейной системы

Общая постановка линейной задачи быстродействия

В самом общем случае линейная задача быстродействия имеет следующую постановку:

\[ \begin{cases} \dot x(t) = A(t)x(t) + B(t)u(t) + f(t), \quad t \in \left[ t_{0}, t_{1} \right]\\ x, f \in \mathbb{R}^{n}, \quad A \in \mathbb{R}^{n\times n}, \quad u \in \mathbb{R}^{m}, \quad B \in \mathbb{R}^{n\times m}, \\ A(\cdot), B{(\cdot)}, f(\cdot) \in C\left[t_{0}, t_{1} \right]\\ u(t) \in \mathcal{P}(t)\in\text{conv}\mathbb{R}^m, \quad \forall t\\ x(t_{0}) \in \mathcal{X}_{0} \in \text{conv}\;\mathbb{R}^{n}, \quad x(t_{1}) \in \mathcal{X}_{1} \in \text{conv} \mathbb{R}^{n}\\ J = t_{1} - t_{0} \rightarrow \min \end{cases} \]

Здесь \(\mathcal{X}_{0}\) – начальное множество значений фазового вектора, \(\mathcal{X}_{1}\) – целевое множество значений фазового вектора, \(\mathcal{P}(\cdot)\) – область управления, \(\mathcal{P}(\cdot)\) непрерывно как многозначное отображение. Считаем, что допустимое управление принадлежит классу кусочно-непрерывных функций.

Принцип максимума Понтрягина для линейной задачи быстродействия

Необходимым условием оптимальности управления является принцип максимума Понтрягина. Сформулируем его для линейной задачи быстродействия, поставленной в общем виде.

Теорема (Принцип максимума Понтрягина)

Пусть \( \{ x^{*}(\cdot), \; u^{*}(\cdot) \} \) – оптимальная пара для линейной задачи быстродействия. Тогда существует непрерывная функция \( \psi(t) \), определенная при \( t \geqslant t_{0} \), являющаяся нетривиальным решением системы

\[ \begin{cases} \dot \psi(t) = -A^{T}(t)\psi(t) \\ \psi(t_{0}) = \psi_{0} \neq \theta \end{cases} \]

и такая, что выполнены условия:

  1. \(\langle\psi(t), B(t)u^{*}(t)\rangle = \rho\left(\psi(t)| B(t) \mathcal{P}(t)\right) \quad\)(принцип максимума),
  2. \(\langle\psi(t_{0}), x^{*}(t_{0})\rangle = \rho(\psi(t_{0})| \mathcal{X}_{0}) \quad\)(условие трансверсальности на левом конце),
  3. \(\langle-\psi(t_{1}), x^{*}(t_{1})\rangle = \rho(-\psi(t_{1})| \mathcal{X}_{1}) \quad\)(условие трансверсальности на правом конце).

Случай нелинейной системы

Общая задача оптимального управления

Постановка задачи оптимального управления в общем виде

Сформулируем задачу оптимального управления для автономной нелинейной системы в общем виде.

Пусть имеется управляемый процесс, описываемый автономной системой обыкновенных дифференциальных уравнений:

\[ \begin{cases} \dot x^{1} = f^{1}\left(x^{1}(t), \ldots , x^{n}(t), u^{1}(t), \ldots , u^{m}(t) \right) \\ \dot x^{2} = f^{2}\left(x^{1}(t), \ldots , x^{n}(t), u^{1}(t), \ldots , u^{m}(t) \right) \\ \cdots \\ \dot x^{n} = f^{n}\left(x^{1}(t), \ldots , x^{n}(t), u^{1}(t), \ldots , u^{m}(t) \right), \\ \end{cases} \]

или, в векторной форме:

\[ \dot x = f(x, u), \\ \]

где \(x = (x^{1}, \ldots , x^{n})', \;f = (f^{1}, \ldots , f^{n})', \; u=(u^{1}, \ldots, u^{m})'\). Здесь \(t\) – время, \(x^1, \,\ldots\,, x^n\) – фазовые координаты управляемого объекта, определяющие его состояние в каждый момент времени \(t\), и \(u^1, \,\ldots\,, u^m\) – параметры управления, определяющие ход процесса.

Функции \( f^{i}(x, u), \; i=\overline{1, n} \), предполагаются непрерывными по совокупности переменных \( (x, \,u) \) и непрерывно дифференцируемыми по \( x \). Заметим, что данная система автономна, то есть правые ее части не зависят явно от времени \( t \).

Класс допустимых управлений состоит из кусочно-непрерывных функций \(u(t)\) со значениями в некотором множестве \(U \subset \mathbb{R}^m \), называемом областью управления. В фазовом пространстве заданы начальное множество \( S_{0} \) и целевое множество \( S_{1} \), являющиеся гладкими многообразиями. Фиксирован начальный момент времени \(t_0\).

Пусть, далее, задана еще одна функция \(f^{0}(x, u)\), непрерывная по совокупности переменных \((x, u)\) и непрерывно дифференцируемая по \(x\).

Требуется найти допустимое управление \(u(t)\), которое переводит фазовую точку из некоторого (заранее не заданного) положения \(x_{0} \in S_{0}\) в момент времени \(t_0\) в некоторое (заранее не заданное) положение \(x_{1} \in S_{1}\) в момент времени \(t_1\), и на котором функционал

\[ J\left( u(\cdot) \right) = \int\limits_{t_{0}}^{t_{1}} f^{0}(x(t), u(t)) dt \]

достигает своего минимального значения (здесь \(t_1\) – конечный момент времени, не фиксирован).

Принцип максимума Понтрягина для общей задачи оптимального управления

Сформулируем принцип максимума Понтрягина для общей задачи оптимального управления, введя предварительно несколько определений и обозначений.

Определение 1

Функция \( \mathcal{H}(\tilde\psi, x, u)=\mathcal{H}(\psi_{0}, \psi, x, u) = \psi_{0}f^{0}(x,u)+\langle\psi,f(x,u)\rangle \) называется функцией Гамильтона–Понтрягина. Здесь \( \ \tilde\psi = (\psi_0, \psi)' = (\psi_0, \psi_{1}, \ldots, \psi_{n})' \) – сопряженные переменные.

Определение 2

Пусть \( \psi:\left[t_{0},\;t_{1}\right] \rightarrow \mathbb{R}^{n} \). Сопряженной системой называется следующая система обыкновенных дифференциальных уравнений:

\[ \frac{d\psi}{dt} = -\frac{\partial\mathcal{H}}{\partial x}. \]


Обозначим \( \mathcal{M}(\psi_{0}, \psi, x) = \sup\limits_{u(\cdot)} \mathcal{H}(\psi_{0}, \psi, x, u) \).

Обозначим через \(T^0_{x_0}\) и \(T^1_{x_1}\) касательные плоскости, проведенные к многообразиям \(S_{0}\) и \(S_{1}\) в точках \( x_0 \in S_{0}\) и \( x_1 \in S_{1}\) соответственно.

Справедлива следующая теорема.

Теорема (Принцип максимума Понтрягина)

Пусть \(u(t), \; t_{0} \leqslant t \leqslant t_{1}\), – допустимое управление, переводящее фазовую точку из некоторого положения \(x_{0} \in S_{0}\) в положение \(x_{1} \in S_{1}\), а \(x(t)\) – соответствующая траектория. Для того, чтобы пара \(\{x(\cdot), u(\cdot)\}\) была оптимальной для задачи оптимального управления с подвижными концами, необходимо существование такой непрерывной и отличной от тождественного нуля вектор-функции \(\tilde\psi:\left[t_0,\;t_1\right] \rightarrow \mathbb{R}^{n+1}\), \(\tilde\psi(t) = \left(\psi_0(t), \; \psi(t)\right) \), удовлетворяющей сопряженной системе, что

  1. \( \mathcal{H}(\psi_{0}, \psi, x, u) = \mathcal{M}(\psi_{0}, \psi, x) \equiv 0 \), при любом \(t \in \left[t_{0}, t_{1}\right]\);
  2. \( \psi_{0} = \text{const} \leqslant 0;\)
  3. \( \psi(t_{0}) \perp T^0_{x_0}\) (Условие трансверсальности на левом конце);
  4. \( \psi(t_{1}) \perp T^1_{x_1}\) (Условие трансверсальности на правом конце).

Нелинейная задача быстродействия

Постановка нелинейной задачи быстродействия

Нелинейная задача быстродействия представляет собой общую задачу оптимального управления, в которой функционал \( J \) имеет следующий вид:

\[ J = t_1 - t_0. \]

Другими словами, это общая задача ОУ, в которой \(f^0(x,u)\equiv 1\).

Принцип максимума Понтрягина для нелинейной задачи быстродействия

Выведем теперь Принцип максимума Понтрягина для оптимальности по быстродействию. Для этого в принципе максимума для общей задачи ОУ следует положить \(f^0(x,u)\equiv 1\). Функция \( \mathcal{H} \) принимает в этом случае следующий вид:

\[ \mathcal{H} = \psi_0 + \sum_{i=1}^{n} \psi_i f^i(x,u). \]

Имея \( n \)-мерный вектор \(\psi=(\psi_1,\ldots,\psi_n) \) и вводя функцию

\[ H(\psi, x, u) = \langle\psi, f\rangle = \sum_{i=1}^{n} \psi_i f^i(x,u) \]

мы можем записать сопряженную систему в следующем модифицированном виде:

\[ \frac{d\psi}{dt}=-\frac{\partial H}{\partial x}. \]

При фиксированных значениях \(\psi\) и \(x\) функция \(H\) становится функцией параметра \(u\); верхнюю грань значений этой функции мы обозначим через \(M(\psi, x)\):

\[ M(\psi,x)=\sup_{u \in U} H(\psi, x, u). \]

В силу соотношения \(H(\psi, x, u) = \mathcal{H}(\psi, x, u) - \psi_0\) мы получаем

\[ M(\psi,x)=\mathcal{M}(\psi, x) - \psi_0, \]

и потому условия 1 и 2 принципа максимума для общей задачи ОУ принимают теперь вид

\[ H(\psi(t),x(t),u(t)) = M(\psi(t), x(t)) = -\psi_0 \geqslant 0. \]

Таким образом, мы получаем следующую теорему.

Теорема (Принцип максимума Понтрягина для нелинейной задачи быстродействия)

Пусть \(u(t), \; t_{0} \leqslant t \leqslant t_{1}\), – допустимое управление, переводящее фазовую точку из некоторого положения \(x_{0} \in S_{0}\) в положение \(x_{1} \in S_{1}\), а \(x(t)\) – соответствующая траектория. Для того, чтобы пара \(\{x(\cdot), u(\cdot)\}\) была оптимальной для задачи быстродействия, необходимо существование такой непрерывной и отличной от тождественного нуля вектор-функции \(\psi:\left[t_0,\;t_1\right] \rightarrow \mathbb{R}^{n}\), удовлетворяющей модифицированной сопряженной системе, что

  1. \( H(\psi, x, u) = M(\psi, x) = \text{const} \geqslant 0 \), при любом \(t \in \left[t_{0}, t_{1}\right]\);
  2. \( \psi(t_{0}) \perp T^0_{x_0}\) (Условие трансверсальности на левом конце);
  3. \( \psi(t_{1}) \perp T^1_{x_1}\) (Условие трансверсальности на правом конце).

Задача быстродействия в случае неавтономной системы с закрепленными концами

Рассмотрим задачу быстродействия в случае, когда функции \(f^i\) явно зависят от времени. Ограничимся рассмотрением задачи с закрепленными концами. Закон движения объекта принимает вид:

\[ \frac{dx^i}{dt} = f^i(x,u,t), \quad i = \overline{1, n}. \]

Для решения этой задачи введем еще одно вспомогательное неизвестное \( x^{n+1} \), изменяющееся по закону

\[ \frac{dx^{n+1}}{dt} = 1, \quad x^{n+1}(t_0)=t_0. \]

Очевидно, что мы будем иметь \(x^{n+1}(t)\equiv t\). С помощью неизвестного \(x^{n+1}\) основная система может быть записана в следующем автономном виде:

\[ \frac{dx^i}{dt} = f^i(x,u,x^{n+1}), i = \overline{1, n}, \] \[ \frac{dx^{n+1}}{dt}=1\equiv f^{n+1}(x, u, x^{n+1}). \]

При этом мы должны найти оптимальную по быстродействию траекторию, соединяющую точку \((x_0^1, \ldots, x_0^n, t_0)\) с некоторой точкой прямой \(S_1\), проходящей через точку \((x_1^1, \ldots, x_1^n, 0)\) параллельно оси \(x^{n+1}\). Таким образом, приходим к задаче с закрепленным левым концом и подвижным правым. Напишем принцип максимума и условие трансверсальности для этой новой задачи ОУ, обозначая соответствующую ей функцию Гамильтона-Понтрягина через \(H^*(\psi, \psi_{n+1}, x, x^{n+1}, u)\), а величину \( \sup_{u \in U} H^*(\psi, \psi_{n+1}, x, x^{n+1}, u)\) через \(M^*(\psi, \psi_{n+1}, x, x^{n+1})\) (здесь \(\psi=(\psi_1,\ldots,\psi_n)\), \(x=(x^1,\ldots,x^n)\)). Имеем:

\[ H^*(\psi, \psi_{n+1}, x, x^{n+1}, u) = \psi_1f^1(x, u, x^{n+1}) + \ldots + \psi_nf^n(x,u,x^{n+1}) + \psi_{n+1}\cdot 1, \] \[ M^*(\psi, \psi_{n+1}, x, x^{n+1}) = \sup_{u \in U} H^*(\psi, \psi_{n+1}, x, x^{n+1}, u). \]

Таким образом, учитывая соотношение \(x^{n+1}=t\), мы можем написать \(H^*=H+\psi_{n+1}, \; M^*=M+\psi_{n+1}\), и поэтому соотношение \( H^*=M^*=-\psi_0=\text{const}\geqslant 0 \), выполняющееся вдоль оптимальной траектории, принимает вид \( H=M=-\psi_0-\psi_{n+1}(t) \). Последнее выражение, вообще говоря, уже не является константным, и его знак неизвестен.

Наконец, условие трансверсальности в правом конце траектории показывает, что прямая \(S_1\) (параллельная оси \(x^{n+1}\)) ортогональна вектору \( \psi_1(t_1), \ldots, \psi_{n+1}(t_1) \). Иначе говоря, \( \psi_{n+1}(t_1) = 0 \). Вместе с соотношением \( \frac{d\psi_{n+1}}{dt} = -\sum_{i=0}^{n+1} \frac{\partial f^i}{\partial x^{n+1}} \psi_i = -\sum_{i=0}^{n} \frac{\partial f^i}{\partial t} \psi_i \), полученным из сопряженной системы, это даст

\[ M(\psi(t), x(t), t) = \int_{t_1}^{t} \sum_{i=0}^{n} \frac{\partial f^i (x(\tau), u(\tau), \tau)}{\partial \tau} \psi_i(\tau) d\tau -\psi_0 \geqslant \int_{t_1}^{t} \sum_{i=0}^{n} \frac{\partial f^i (x(\tau), u(\tau), \tau)}{\partial \tau} \psi_i(\tau) d\tau \]

Итак, получаем следующую теорему.

Теорема (Принцип максимума Понтрягина для нелинейной задачи быстродействия, случай неавтономной системы)

Пусть \(u(t), \; t_{0} \leqslant t \leqslant t_{1}\), – допустимое управление, переводящее фазовую точку из некоторого положения \(x_{0} \in S_{0}\) в положение \(x_{1} \in S_{1}\), а \(x(t)\) – соответствующая траектория. Для того, чтобы пара \(\{x(\cdot), u(\cdot)\}\) была оптимальной для задачи быстродействия с неавтономной системой и закрепленными концами, необходимо существование такой непрерывной и отличной от тождественного нуля вектор-функции \(\psi:\left[t_0,\;t_1\right] \rightarrow \mathbb{R}^{n}\), удовлетворяющей модифицированной сопряженной системе, что

  1. \( H(\psi, x, u) = M(\psi, x) \), при любом \(t \in \left[t_{0}, t_{1}\right]\);
  2. \( M(\psi(t), x(t), t) \geqslant \int_{t_1}^{t} \sum_{i=0}^{n} \frac{\partial f^i (x(\tau), u(\tau), \tau)}{\partial \tau} \psi_i(\tau) d\tau \).

(Здесь всюду \(x=x(t)=(x^1(t),\ldots,x^n(t))\), \(\psi=\psi(t)=(\psi_1(t),\ldots,\psi_n(t))\) ).

Оказывается далее, что разность между левой и правой частями соотношения 2 постоянна, так что проверку соотношения 2 достаточно произвести в момент времени \(t_1: M(\psi(t_1), x(t_1), t_1) \geqslant 0 \).

Список литературы

  • Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф. Мищенко. Математическая теория оптимальных процессов. МОСКВА «НАУКА»‎. 1983.
  • Ю.А. Комаров. Лекции по курсу "Оптимальное управление (линейные системы)"; лекции по курсу "Оптимальное управление (нелинейные системы)". 2020-2021.