Задача быстродействия: различия между версиями
Temirlan (обсуждение | вклад) |
Tochilin (обсуждение | вклад) |
||
(не показаны 4 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
− | Задача быстродействия, | + | == Постановка задачи == |
− | + | ''Задача быстродействия'' - задача перевода системы из начального фиксированного положения в конечное, также фиксированное, положение за минимальное время. | |
+ | |||
+ | Пусть наша система описывается следующими условиями: | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | \dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \\ | ||
+ | x(t_0) = x^0, \\ | ||
+ | x(t_1) = x^1, \\ | ||
+ | u(\tau) \in \mathcal{P}(\tau) \in \text{conv}\mathbb{R}^m, \\ | ||
+ | t_1 - t_0 \rightarrow \inf, | ||
+ | \end{cases} | ||
+ | \] | ||
+ | |||
+ | где \( x_0, x_1, t_0 \) - фиксированы, \( A(t), B(t), f(t) \) - непрерывны, а \( \mathcal{P} \) непрерывно как многозначное отображение (это требование гарантирует нам, что для любого \( l: \rho(l\vert\mathcal{P}(\tau)\) по \(\tau\) непрерывна\(^1\)). | ||
+ | |||
+ | \(^1\)В частности, при \(m=1\) множество \(\mathcal{P}\) выглядит как \(\mathcal{P} = [a(\tau), b(\tau)]\); неперерывность многозначного отображения означает, что \(a(\tau), b(\tau)\) - непрерывны. | ||
+ | |||
+ | Отметим, что отказ от требования \(u(\tau) \in \mathcal{P}(\tau) \in \text{conv}\mathbb{R}^m\) невозможен; в этом случае \( \overline{\mathcal{X}_\mathcal{P}[t_1]} = \mathcal{X}_\overline{\mathcal{P}}[t_1] \). Разумность такого отказа показывает следующий пример: | ||
+ | |||
+ | ==== Пример 1 ==== | ||
+ | Пусть система описывается уравнениями | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | \dot{x} = u, \\ | ||
+ | x(0) = 0, \\ | ||
+ | u(\tau) \in [-1, 1]. | ||
+ | \end{cases} | ||
+ | \] | ||
+ | |||
+ | Тогда множеством достижимости \(\mathcal{X}_1\) буде бесконечный треугольник в I и IV квадрантах, лежащий внутри прямых \(x=t\) и \(x=-t\). При этом, геометрически ясно, что замена множества допустимых управлений с отрезка \([-1, 1]\) на двухточечное множество \(\{-1, 1\}\)не изменит множества достижимости: любую точку, лежащую внутри \(\mathcal{X}_1\), можно соединить с началом координат ломанной, содержащей звенья, параллельные прямым \(x=t\) и \(x=-1\). | ||
+ | |||
+ | Именно этот прием используется при управлении парусными судами при отсутствии попутного ветра(при этом говорят, что судно идет галсом). | ||
+ | |||
+ | Введем множество достижимости | ||
+ | \[ | ||
+ | \mathcal{X}[t_1] = \mathcal{X}(t_1, t_0, x^0) = \{ x = x(t_1, t_0, x^0 \vert u(\cdot)), u(\tau) \in \mathcal{P} \}. | ||
+ | \] | ||
+ | |||
+ | Введем также трубку достижимости \(\mathcal{X}[\cdot]\). Следует понимать, что множество достижимости - это множество, а трубка достижимости - это функция, отображающая время на соответствующее множество достижимости. Ее графиком будем называть множество \( \mathcal{X}[\cdot] = \{(t,x): x\in\mathcal{X}[t]\} \). | ||
+ | |||
+ | Ключевую роль играет следующее утверждение | ||
+ | |||
+ | ==== Утверждение 1 ==== | ||
+ | Если \(t_1^*-t_0\) - время оптимального взаимодействия, \( x^*, u^* \) - соответственно траектория и управления, отвечающие этому времени, то \( (t_1^*, x^*(t_1^*)) \in \partial\mathcal{X}[\cdot] \). | ||
+ | |||
+ | Следующий пример показывает, что в криволинейных координатах это утверждение, вообще говоря, неверно. | ||
+ | |||
+ | ==== Пример 2 ==== | ||
+ | Пусть система описывается уравнениями | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | \dot{\rho} = u_1, \vert u_1 \vert \le 1, \\ | ||
+ | \dot{\varphi} = u_2, \vert u_2 \vert \le 1, \\ | ||
+ | \rho(0) = \rho^0 > 0, \\ | ||
+ | \varphi(0) = \varphi^0. | ||
+ | \end{cases} | ||
+ | \] | ||
+ | |||
+ | Если бы это были декартовы координаты на плоскости, то трубкой достижимости была бы "распухающий квадрат" \( \mathcal{X}[t_1] = \{ \vert x-x^0 \vert \le t_1, \vert y - y^0 \vert \le t_2 \} \). В нашем же случае это будет "распухающий кольцевой сектор", и множество достижимости не будет выпуклым. Это приведет к тому, что если финальная точка будет отвечать углу в \(\pi\), то \( (t_1^*, x^*(t_1^*)) \notin \partial\mathcal{X}[\cdot] \). | ||
+ | |||
+ | Введем функцию \(\varepsilon[t_1] = d(x^1, \mathcal{X}[t_1])\). | ||
+ | |||
+ | ==== Утверждение 2 ==== | ||
+ | \( t_1^* - t_0 \) - время оптимального взаимодействия \( \iff t_1^*\) - наименьший корень уравнения \( \varepsilon[t_1] = 0, t_1 \ge t_0 \). | ||
+ | |||
+ | При этом стоит иметь в виду, что если некое множество \(Z\) - компакт, то \(x \in Z \iff d(x, Z) = 0\). | ||
+ | |||
+ | == Свойства множества достижимости == | ||
+ | Далее доказательства опускаются, но их знать обязательно нужно. | ||
+ | ==== Утверждение 3 ==== | ||
+ | \( \mathcal{X}[t_1] \in \text{conv}\mathbb{R}^n \). | ||
+ | |||
+ | ==== Лемма 1 (ОЧЕНЬ важная) ==== | ||
+ | \( \sup_{u(\cdot)} \left[ \int\limits_{t_0}^{t_1} <s(\tau), u(\tau)> d\tau \right] = \int\limits_{t_0}^{t_1} \sup_{u \in \mathcal{P}} <s(\tau), u> d\tau \). | ||
+ | |||
+ | |||
+ | == Условие максимума == | ||
+ | Перейдем непосредственно к решению задачи быстродействия. Выпишем в терминах опорных функций условие \( x^1 \in \mathcal{X}[t_1]: \) | ||
+ | \[ | ||
+ | <l, x^1> \le \rho(l \vert \mathcal{X}[t_1]) | ||
+ | \] | ||
+ | для любого \(l\), или, в терминах расстояний до множества, \( d(x^1, \mathcal{X}[t_1] = \varepsilon[t_1] = 0 \). Фиксируем произвольное число \(\hat{\varepsilon}\). Тогда верна следующая цепочка равносильных переходов: | ||
+ | \[ | ||
+ | d(x^1, \mathcal{X}[t_1]) \le \hat{\varepsilon} \iff x^1 \in \mathcal{X}[t_1] + \hat{\varepsilon}B_1(0) \iff <l, x^1> \le \rho(l \vert \mathcal{X}[t_1]) + \hat{\varepsilon}\vert\vert l \vert\vert. | ||
+ | \] | ||
+ | |||
+ | В силу положительной однородности левой и правой части по \(l\), последнее соотношение можно нормировать и записать в виде | ||
+ | \[ | ||
+ | \sup_{\vert\vert l \vert\vert = 1}(<l, x^1> - \rho(l \vert \mathcal{X}[t_1])) \le \hat{\varepsilon}, | ||
+ | \] | ||
+ | |||
+ | откуда следует, что \(\varepsilon[t_1] = \sup_{\vert\vert l \vert\vert}(<l, x^1> - \rho(l \vert \mathcal{X}[t_1])) \). Таким образом, отсюда время быстродействия \(t_1^*\) находится как наименьший корень уравнения \( \varepsilon[t_1^*] = 0 \). | ||
+ | |||
+ | Возьмем вектор \( l^0 \in \text{Argmax}_{\vert\vert l \vert\vert = 1}(<l, x^1> - \rho(l \vert \mathcal{X}[t_1])) \). Тогда \( <l^0, x^1> = \rho(l^0 \vert \mathcal{X}[t_1^*]) \), что означает, что \(x^1\) лежит на пересечении опорной гиперплоскости и самого множества. Отсюда \( u^*(\tau) = u^{l_0}(\tau) \). Таким образом, мы можем записать необходимое условие максимума: | ||
+ | |||
+ | Если \(u^*\) есть управление, доставляющее оптимальное управление, то | ||
+ | \[ | ||
+ | <B^T(\tau)\psi(\tau)u^*(\tau)> = \max_{u \in \mathcal{P}(\tau)}<B^T(\tau)\psi(\tau), u>. | ||
+ | \] | ||
+ | |||
+ | Естественно встает вопрос: является ли это это условие достаточным? Оказывается нет - следующий пример показывается, что условию максимума может удовлетворять вообще любое допустимое управление! | ||
+ | |||
+ | ==== Пример 3 ==== | ||
+ | Рассмотрим следующую задачу быстродействию: | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | \dot{x}_1 = u - 1, \\ | ||
+ | \dot{x}_2 = u + 1, \\ | ||
+ | x^0 = [0, 0]^T, \\ | ||
+ | x^1 = [-1, 1]^T, \\ | ||
+ | \vert u(t) \vert \le 1. | ||
+ | \end{cases} | ||
+ | \] | ||
+ | |||
+ | В этой задаче, \( \mathcal{P}(t) \equiv \mathcal{P} = [-1, 1] \). Найдем опорную функцию для этой задачи: | ||
+ | \[ | ||
+ | \rho(l \vert \mathcal{X}[t_1]) = \int\limits_0^{t_1}<l, [-1, 1]^T> + \int\limits_0^{t_1}\rho([1, 1]^Tl \vert \mathcal{P}(\tau))d\tau = t_1(l_2 - l_1) + t_1\vert l_1 + l_2\vert. | ||
+ | \] | ||
+ | |||
+ | Легко видеть, что это сумма опорных функций одноточечного множества и отрезка. С геометрической точки зрения, множество достижимости есть отрезок, соединяющий на плоскости точки \( [-1, -1]^T \) и \([1, 1]^T\), который "ползает" по плоскости. Очевидно, что для быстрейшего достижения очки \([-1, 1]^T\) надо "ползти" вверх по прямой \(y=-x\). Тогда в момент \(t^*=1\) мы достигнем финальной точки. | ||
+ | |||
+ | Однако для нахождения оптимального управления нам (формально) надо было бы найти вектор-максимизатор \(l_0\). На эту роль подходят вектора \( \frac{1}{\sqrt{2}}[-1, 1]^T \) и \( \frac{1}{\sqrt{2}}[1, -1]^T \). | ||
+ | |||
+ | Выпишем условие максимума: | ||
+ | \[ | ||
+ | <B^Tl^0, u^*> = \max_{u \in \mathcal{P}}<B^Tl^0, u>, | ||
+ | \] | ||
+ | |||
+ | которое в нашем случае вид \(0 = 0\). | ||
+ | |||
+ | Хотя приведенный пример показывает редкую для линейных систем ситуацию, стоит поставить вопрос о условиях, позволяющих использовать условие максимума как необходимое и достаточное условие. | ||
+ | |||
+ | ==== Условие нормальности (общности положения) ==== | ||
+ | Рассмотрим частный случай нашей задачи: Пусть \(A, B\) - const, а \(\mathcal{P}\) - выпуклый многогранник с непустой внутренностью, построенный на точках \(u_1, u_2, \dots, u_M\), причем \(u_j \in \partial\mathcal{P}, j = \overline{1, M}\). Пусть \( w = w^{k,l} = u^k-u^l \), где \(k, l\) соединены ребром. Потребуем, чтобы выполнялось условие нормальности (или условие общности положения): | ||
+ | \[ | ||
+ | \text{Векторы } Bw, ABw, \dots, A^{n-1}Bw \text{ линейно независимы}. | ||
+ | \] | ||
+ | Отметим, что если \(\mathcal{P}\) имеет вид "параллелепипеда", \( \mathcal{P} = \{ u \in \mathbb{R}^m \vert a_i \le u_i \le b_i, i = \overline{1, m} \} \), а матрица \(B\) состоит из столбцов \(b^1, b^2, \dots, b^m\), то условие нормальности требует линейной независимости векторов \( b^i, Ab^i, \dots, A^{n-1}b^i \) для всех \(i\), что представляет собой в точности условие полной управляемости. | ||
+ | |||
+ | Роль этого условия раскрывает следующая теорема. | ||
+ | |||
+ | ==== Теорема 1 ==== | ||
+ | Если выполняется условие нормальности, то условию максимума удовлетворяет единственное управление. | ||
+ | |||
+ | ==== Замечание 1 ==== | ||
+ | На самом деле, условие нормальности гарантирует строгую выпуклость множества достижимости. | ||
+ | |||
+ | ==== Пример 4 ==== | ||
+ | Рассмотрим задачу | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | \dot{x}_1 = u_1, \vert u_1 \vert \le 1, \\ | ||
+ | \dot{x}_2 = u_2, \vert u_2 \vert \le 1. \\ | ||
+ | \end{cases} | ||
+ | \] | ||
+ | |||
+ | Эта система вполне управляема, но не сильно вполне управляема. Множество достижимости в данном случае - квадрат (т.е. не строго выпуклое). Случай, в котором условие максимума выделяет единственное управление, бывает тогда, когда финальная точка оказывается на углу квадрата. | ||
+ | |||
+ | === Условие управляемости при выпуклости множества \(\mathcal{P}\) === | ||
+ | ==== Теорема 2 ==== | ||
+ | Пусть \(\mathcal{P}\) строго выпукло и имеет непустую внутренностьб, и выполнено условие полной управляемости, | ||
+ | \[ | ||
+ | \text{rg}[B\vert AB\vert \dots\vert A^{n-1}B] = n. | ||
+ | \] | ||
+ | Тогда условие максимума определяет оптимальное управление единственным образом. |
Текущая версия на 18:19, 4 ноября 2021
Постановка задачи
Задача быстродействия - задача перевода системы из начального фиксированного положения в конечное, также фиксированное, положение за минимальное время.
Пусть наша система описывается следующими условиями: \[ \begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \\ x(t_0) = x^0, \\ x(t_1) = x^1, \\ u(\tau) \in \mathcal{P}(\tau) \in \text{conv}\mathbb{R}^m, \\ t_1 - t_0 \rightarrow \inf, \end{cases} \]
где \( x_0, x_1, t_0 \) - фиксированы, \( A(t), B(t), f(t) \) - непрерывны, а \( \mathcal{P} \) непрерывно как многозначное отображение (это требование гарантирует нам, что для любого \( l: \rho(l\vert\mathcal{P}(\tau)\) по \(\tau\) непрерывна\(^1\)).
\(^1\)В частности, при \(m=1\) множество \(\mathcal{P}\) выглядит как \(\mathcal{P} = [a(\tau), b(\tau)]\); неперерывность многозначного отображения означает, что \(a(\tau), b(\tau)\) - непрерывны.
Отметим, что отказ от требования \(u(\tau) \in \mathcal{P}(\tau) \in \text{conv}\mathbb{R}^m\) невозможен; в этом случае \( \overline{\mathcal{X}_\mathcal{P}[t_1]} = \mathcal{X}_\overline{\mathcal{P}}[t_1] \). Разумность такого отказа показывает следующий пример:
Пример 1
Пусть система описывается уравнениями \[ \begin{cases} \dot{x} = u, \\ x(0) = 0, \\ u(\tau) \in [-1, 1]. \end{cases} \]
Тогда множеством достижимости \(\mathcal{X}_1\) буде бесконечный треугольник в I и IV квадрантах, лежащий внутри прямых \(x=t\) и \(x=-t\). При этом, геометрически ясно, что замена множества допустимых управлений с отрезка \([-1, 1]\) на двухточечное множество \(\{-1, 1\}\)не изменит множества достижимости: любую точку, лежащую внутри \(\mathcal{X}_1\), можно соединить с началом координат ломанной, содержащей звенья, параллельные прямым \(x=t\) и \(x=-1\).
Именно этот прием используется при управлении парусными судами при отсутствии попутного ветра(при этом говорят, что судно идет галсом).
Введем множество достижимости \[ \mathcal{X}[t_1] = \mathcal{X}(t_1, t_0, x^0) = \{ x = x(t_1, t_0, x^0 \vert u(\cdot)), u(\tau) \in \mathcal{P} \}. \]
Введем также трубку достижимости \(\mathcal{X}[\cdot]\). Следует понимать, что множество достижимости - это множество, а трубка достижимости - это функция, отображающая время на соответствующее множество достижимости. Ее графиком будем называть множество \( \mathcal{X}[\cdot] = \{(t,x): x\in\mathcal{X}[t]\} \).
Ключевую роль играет следующее утверждение
Утверждение 1
Если \(t_1^*-t_0\) - время оптимального взаимодействия, \( x^*, u^* \) - соответственно траектория и управления, отвечающие этому времени, то \( (t_1^*, x^*(t_1^*)) \in \partial\mathcal{X}[\cdot] \).
Следующий пример показывает, что в криволинейных координатах это утверждение, вообще говоря, неверно.
Пример 2
Пусть система описывается уравнениями \[ \begin{cases} \dot{\rho} = u_1, \vert u_1 \vert \le 1, \\ \dot{\varphi} = u_2, \vert u_2 \vert \le 1, \\ \rho(0) = \rho^0 > 0, \\ \varphi(0) = \varphi^0. \end{cases} \]
Если бы это были декартовы координаты на плоскости, то трубкой достижимости была бы "распухающий квадрат" \( \mathcal{X}[t_1] = \{ \vert x-x^0 \vert \le t_1, \vert y - y^0 \vert \le t_2 \} \). В нашем же случае это будет "распухающий кольцевой сектор", и множество достижимости не будет выпуклым. Это приведет к тому, что если финальная точка будет отвечать углу в \(\pi\), то \( (t_1^*, x^*(t_1^*)) \notin \partial\mathcal{X}[\cdot] \).
Введем функцию \(\varepsilon[t_1] = d(x^1, \mathcal{X}[t_1])\).
Утверждение 2
\( t_1^* - t_0 \) - время оптимального взаимодействия \( \iff t_1^*\) - наименьший корень уравнения \( \varepsilon[t_1] = 0, t_1 \ge t_0 \).
При этом стоит иметь в виду, что если некое множество \(Z\) - компакт, то \(x \in Z \iff d(x, Z) = 0\).
Свойства множества достижимости
Далее доказательства опускаются, но их знать обязательно нужно.
Утверждение 3
\( \mathcal{X}[t_1] \in \text{conv}\mathbb{R}^n \).
Лемма 1 (ОЧЕНЬ важная)
\( \sup_{u(\cdot)} \left[ \int\limits_{t_0}^{t_1} <s(\tau), u(\tau)> d\tau \right] = \int\limits_{t_0}^{t_1} \sup_{u \in \mathcal{P}} <s(\tau), u> d\tau \).
Условие максимума
Перейдем непосредственно к решению задачи быстродействия. Выпишем в терминах опорных функций условие \( x^1 \in \mathcal{X}[t_1]: \) \[ <l, x^1> \le \rho(l \vert \mathcal{X}[t_1]) \] для любого \(l\), или, в терминах расстояний до множества, \( d(x^1, \mathcal{X}[t_1] = \varepsilon[t_1] = 0 \). Фиксируем произвольное число \(\hat{\varepsilon}\). Тогда верна следующая цепочка равносильных переходов: \[ d(x^1, \mathcal{X}[t_1]) \le \hat{\varepsilon} \iff x^1 \in \mathcal{X}[t_1] + \hat{\varepsilon}B_1(0) \iff <l, x^1> \le \rho(l \vert \mathcal{X}[t_1]) + \hat{\varepsilon}\vert\vert l \vert\vert. \]
В силу положительной однородности левой и правой части по \(l\), последнее соотношение можно нормировать и записать в виде \[ \sup_{\vert\vert l \vert\vert = 1}(<l, x^1> - \rho(l \vert \mathcal{X}[t_1])) \le \hat{\varepsilon}, \]
откуда следует, что \(\varepsilon[t_1] = \sup_{\vert\vert l \vert\vert}(<l, x^1> - \rho(l \vert \mathcal{X}[t_1])) \). Таким образом, отсюда время быстродействия \(t_1^*\) находится как наименьший корень уравнения \( \varepsilon[t_1^*] = 0 \).
Возьмем вектор \( l^0 \in \text{Argmax}_{\vert\vert l \vert\vert = 1}(<l, x^1> - \rho(l \vert \mathcal{X}[t_1])) \). Тогда \( <l^0, x^1> = \rho(l^0 \vert \mathcal{X}[t_1^*]) \), что означает, что \(x^1\) лежит на пересечении опорной гиперплоскости и самого множества. Отсюда \( u^*(\tau) = u^{l_0}(\tau) \). Таким образом, мы можем записать необходимое условие максимума:
Если \(u^*\) есть управление, доставляющее оптимальное управление, то \[ <B^T(\tau)\psi(\tau)u^*(\tau)> = \max_{u \in \mathcal{P}(\tau)}<B^T(\tau)\psi(\tau), u>. \]
Естественно встает вопрос: является ли это это условие достаточным? Оказывается нет - следующий пример показывается, что условию максимума может удовлетворять вообще любое допустимое управление!
Пример 3
Рассмотрим следующую задачу быстродействию: \[ \begin{cases} \dot{x}_1 = u - 1, \\ \dot{x}_2 = u + 1, \\ x^0 = [0, 0]^T, \\ x^1 = [-1, 1]^T, \\ \vert u(t) \vert \le 1. \end{cases} \]
В этой задаче, \( \mathcal{P}(t) \equiv \mathcal{P} = [-1, 1] \). Найдем опорную функцию для этой задачи: \[ \rho(l \vert \mathcal{X}[t_1]) = \int\limits_0^{t_1}<l, [-1, 1]^T> + \int\limits_0^{t_1}\rho([1, 1]^Tl \vert \mathcal{P}(\tau))d\tau = t_1(l_2 - l_1) + t_1\vert l_1 + l_2\vert. \]
Легко видеть, что это сумма опорных функций одноточечного множества и отрезка. С геометрической точки зрения, множество достижимости есть отрезок, соединяющий на плоскости точки \( [-1, -1]^T \) и \([1, 1]^T\), который "ползает" по плоскости. Очевидно, что для быстрейшего достижения очки \([-1, 1]^T\) надо "ползти" вверх по прямой \(y=-x\). Тогда в момент \(t^*=1\) мы достигнем финальной точки.
Однако для нахождения оптимального управления нам (формально) надо было бы найти вектор-максимизатор \(l_0\). На эту роль подходят вектора \( \frac{1}{\sqrt{2}}[-1, 1]^T \) и \( \frac{1}{\sqrt{2}}[1, -1]^T \).
Выпишем условие максимума: \[ <B^Tl^0, u^*> = \max_{u \in \mathcal{P}}<B^Tl^0, u>, \]
которое в нашем случае вид \(0 = 0\).
Хотя приведенный пример показывает редкую для линейных систем ситуацию, стоит поставить вопрос о условиях, позволяющих использовать условие максимума как необходимое и достаточное условие.
Условие нормальности (общности положения)
Рассмотрим частный случай нашей задачи: Пусть \(A, B\) - const, а \(\mathcal{P}\) - выпуклый многогранник с непустой внутренностью, построенный на точках \(u_1, u_2, \dots, u_M\), причем \(u_j \in \partial\mathcal{P}, j = \overline{1, M}\). Пусть \( w = w^{k,l} = u^k-u^l \), где \(k, l\) соединены ребром. Потребуем, чтобы выполнялось условие нормальности (или условие общности положения): \[ \text{Векторы } Bw, ABw, \dots, A^{n-1}Bw \text{ линейно независимы}. \] Отметим, что если \(\mathcal{P}\) имеет вид "параллелепипеда", \( \mathcal{P} = \{ u \in \mathbb{R}^m \vert a_i \le u_i \le b_i, i = \overline{1, m} \} \), а матрица \(B\) состоит из столбцов \(b^1, b^2, \dots, b^m\), то условие нормальности требует линейной независимости векторов \( b^i, Ab^i, \dots, A^{n-1}b^i \) для всех \(i\), что представляет собой в точности условие полной управляемости.
Роль этого условия раскрывает следующая теорема.
Теорема 1
Если выполняется условие нормальности, то условию максимума удовлетворяет единственное управление.
Замечание 1
На самом деле, условие нормальности гарантирует строгую выпуклость множества достижимости.
Пример 4
Рассмотрим задачу \[ \begin{cases} \dot{x}_1 = u_1, \vert u_1 \vert \le 1, \\ \dot{x}_2 = u_2, \vert u_2 \vert \le 1. \\ \end{cases} \]
Эта система вполне управляема, но не сильно вполне управляема. Множество достижимости в данном случае - квадрат (т.е. не строго выпуклое). Случай, в котором условие максимума выделяет единственное управление, бывает тогда, когда финальная точка оказывается на углу квадрата.
Условие управляемости при выпуклости множества \(\mathcal{P}\)
Теорема 2
Пусть \(\mathcal{P}\) строго выпукло и имеет непустую внутренностьб, и выполнено условие полной управляемости, \[ \text{rg}[B\vert AB\vert \dots\vert A^{n-1}B] = n. \] Тогда условие максимума определяет оптимальное управление единственным образом.