Интегральное преобразование Фурье: различия между версиями
Alice1 (обсуждение | вклад) |
Alice1 (обсуждение | вклад) |
||
(не показано 7 промежуточных версий 2 участников) | |||
Строка 15: | Строка 15: | ||
=== Обратное преобразование === | === Обратное преобразование === | ||
− | {| class="wikitable" style="margin: auto;" | + | {| class="wikitable" style="margin: auto; " |
|- | |- | ||
| \[ | | \[ | ||
Строка 28: | Строка 28: | ||
# Из того, что $$f(x)\in L_1(\mathbb{R})$$ следует, что $$|F(\lambda)| \leq \int\limits^{+\infty}_{-\infty} |f(t)| dt < \infty$$. Отсюда следует, что для $$f(\cdot)\in L_1(\mathbb{R})$$ существует ''прямое преобразование Фурье''. Аналогично для $$F(\lambda)\in L_1(\mathbb{R})$$ следует, что существует ''обратное преобразование Фурье''. | # Из того, что $$f(x)\in L_1(\mathbb{R})$$ следует, что $$|F(\lambda)| \leq \int\limits^{+\infty}_{-\infty} |f(t)| dt < \infty$$. Отсюда следует, что для $$f(\cdot)\in L_1(\mathbb{R})$$ существует ''прямое преобразование Фурье''. Аналогично для $$F(\lambda)\in L_1(\mathbb{R})$$ следует, что существует ''обратное преобразование Фурье''. | ||
− | # Пусть $$f(x)$$ - дифференцируемая на $$\mathbb{R}$$ и существует $$\int\limits_{\mathbb{R}} |f(t)| dt < \infty$$ и $$\int\limits_{\mathbb{R}} |f'(t)| dt < \infty$$ | + | # Пусть $$f(x)$$ - дифференцируемая на $$\mathbb{R}$$ и существует $$\int\limits_{\mathbb{R}} |f(t)| dt < \infty$$ и $$\int\limits_{\mathbb{R}} |f'(t)| dt < \infty$$. Тогда |
\[ | \[ | ||
Строка 38: | Строка 38: | ||
\end{aligned} | \end{aligned} | ||
\right\} =\\ | \right\} =\\ | ||
− | = \frac{1}{i\lambda}\int_{-\infty}^{+\infty} f'(t) e^{-it\lambda} dt \Rightarrow F(\lambda) \leq \frac{1}{|\lambda|} \int_{-\infty}^{+\infty} |f'(t)|dt = o\left(\frac{1}{|\lambda|}\right) | + | = \frac{1}{i\lambda}\int_{-\infty}^{+\infty} f'(t) e^{-it\lambda} dt \Rightarrow F(\lambda) \leq \frac{1}{|\lambda|} \int_{-\infty}^{+\infty} |f'(t)|dt = o\left(\frac{1}{|\lambda|}\right). |
\] | \] | ||
<br> | <br> | ||
− | Аналогично если $$f(t)\in C^m (\mathbb{R})$$ и существует $$\int\limits_{\mathbb{R}}|f^{(k)}(t)| dt < \infty, \quad \forall k = 1, \ldots m$$, то $$|F(\lambda)|=o\left(\frac{1}{|\lambda|^m}\right)$$ при $$\lambda\rightarrow\pm\infty$$. | + | Аналогично, если $$f(t)\in C^m (\mathbb{R})$$, и существует $$\int\limits_{\mathbb{R}}|f^{(k)}(t)| dt < \infty, \quad \forall k = 1, \ldots m$$, то $$|F(\lambda)|=o\left(\frac{1}{|\lambda|^m}\right)$$ при $$\lambda\rightarrow\pm\infty$$. |
=== Дифференцирование === | === Дифференцирование === | ||
+ | ---- | ||
− | * $$(-it)^k f(t) \leftrightarrow F^{(k)}(\lambda)$$ | + | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" |
− | * $$f^{(k)}(t) \leftrightarrow (ik)^k F(\lambda)$$ | + | | |
+ | * $$(-it)^k f(t) \leftrightarrow F^{(k)}(\lambda).$$ | ||
+ | * $$f^{(k)}(t) \leftrightarrow (ik)^k F(\lambda).$$ | ||
+ | |} | ||
=== Масштабирование === | === Масштабирование === | ||
+ | ---- | ||
+ | |||
+ | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" | ||
+ | | | ||
+ | $$f(\alpha t) \leftrightarrow \frac{1}{|\alpha|}F\left(\frac{1}{\lambda}\right), \quad \alpha\not=0. $$ | ||
+ | |} | ||
− | |||
− | |||
'''Следствие''': Пусть $$\alpha = -1$$. Тогда $$f(-t)\leftrightarrow F(-\lambda) \Rightarrow$$ свойства чётности и нечётности переносится и на преобразование Фурье. | '''Следствие''': Пусть $$\alpha = -1$$. Тогда $$f(-t)\leftrightarrow F(-\lambda) \Rightarrow$$ свойства чётности и нечётности переносится и на преобразование Фурье. | ||
=== Линейность === | === Линейность === | ||
+ | ---- | ||
$$f(t) \leftrightarrow F(\lambda)$$ | $$f(t) \leftrightarrow F(\lambda)$$ | ||
Строка 62: | Строка 71: | ||
$$\qquad \Downarrow$$ | $$\qquad \Downarrow$$ | ||
<br> | <br> | ||
− | $$\forall \alpha, \beta \Rightarrow \alpha f(t) + \beta g(t)\leftrightarrow \alpha F(\lambda) + \beta G(\lambda)$$ | + | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" |
+ | | | ||
+ | $$\forall \alpha, \beta \Rightarrow \alpha f(t) + \beta g(t)\leftrightarrow \alpha F(\lambda) + \beta G(\lambda).$$ | ||
+ | |} | ||
=== Симметричность === | === Симметричность === | ||
+ | ---- | ||
$$f(t) \leftrightarrow F(\lambda)$$ | $$f(t) \leftrightarrow F(\lambda)$$ | ||
Строка 70: | Строка 83: | ||
$$\qquad \Downarrow$$ | $$\qquad \Downarrow$$ | ||
<br> | <br> | ||
− | $$F(t) \leftrightarrow 2\pi f(-\lambda)$$ | + | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" |
− | + | | | |
+ | $$F(t) \leftrightarrow 2\pi f(-\lambda).$$ | ||
+ | |} | ||
+ | |||
''Распишем:'' $$F(\lambda) = \int\limits_{-\infty}^{+\infty} e^{-it\lambda} f(t) dt = \left\{ \text{Пусть } s=-t\right\} = \int\limits_{-\infty}^{+\infty} e^{is\lambda} f (-s) ds = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \left(2\pi f(-s)\right) e^{is\lambda}ds$$. | ''Распишем:'' $$F(\lambda) = \int\limits_{-\infty}^{+\infty} e^{-it\lambda} f(t) dt = \left\{ \text{Пусть } s=-t\right\} = \int\limits_{-\infty}^{+\infty} e^{is\lambda} f (-s) ds = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \left(2\pi f(-s)\right) e^{is\lambda}ds$$. | ||
<br> | <br> | ||
Строка 77: | Строка 93: | ||
=== Сдвиг === | === Сдвиг === | ||
+ | ---- | ||
+ | |||
$$f(t) \leftrightarrow F(\lambda)$$ | $$f(t) \leftrightarrow F(\lambda)$$ | ||
<br> | <br> | ||
$$\qquad \Downarrow$$ | $$\qquad \Downarrow$$ | ||
<br> | <br> | ||
− | $$f(t-t_0)\leftrightarrow F(\lambda) e^{-it_0\lambda}$$ | + | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" |
− | + | | | |
+ | $$f(t-t_0)\leftrightarrow F(\lambda) e^{-it_0\lambda}.$$ | ||
+ | |} | ||
+ | |||
''Распишем:'' Пусть $$g(t) = f(t - t_0)$$. | ''Распишем:'' Пусть $$g(t) = f(t - t_0)$$. | ||
<br> | <br> | ||
− | $$G(\lambda) = \int\limits_{-\infty}^{+\infty} e^{-it\lambda} g(t) dt = \left\{ \begin{aligned} &t-t_0=s \\ &t=t_0+s \end{aligned} \right\} = \underbrace{\int\limits_{-\infty}^{+\infty} e^{-is\lambda} f(s) ds}_{F(\lambda)} \cdot e^{-it_0\lambda}$$ | + | $$G(\lambda) = \int\limits_{-\infty}^{+\infty} e^{-it\lambda} g(t) dt = \left\{ \begin{aligned} &t-t_0=s \\ &t=t_0+s \end{aligned} \right\} = \underbrace{\int\limits_{-\infty}^{+\infty} e^{-is\lambda} f(s) ds}_{F(\lambda)} \cdot e^{-it_0\lambda}.$$ |
<br> | <br> | ||
Тогда $$g(t)\leftrightarrow G(\lambda) = F(\lambda) e^{-it\lambda}$$. | Тогда $$g(t)\leftrightarrow G(\lambda) = F(\lambda) e^{-it\lambda}$$. | ||
=== Свёртка (интегральная конволюция) === | === Свёртка (интегральная конволюция) === | ||
+ | ---- | ||
+ | |||
+ | Для любых $$f(t)$$, $$g(t)$$ выполняется $$(f * g)(t) = \int\limits_{-\infty}^{+\infty} f(t-s)g(s)ds = \int\limits_{-\infty}^{+\infty} f(s) g(t-s) ds$$. | ||
+ | <br> | ||
+ | * $$f(t) \leftrightarrow F(\lambda)$$ <br> $$g(t)\leftrightarrow G(\lambda)$$ | ||
+ | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" | ||
+ | | | ||
+ | $$(f * g)(t) \leftrightarrow F(\lambda)G(\lambda).$$ | ||
+ | |} | ||
+ | ''Распишем:'' $$\int\limits_{-\infty}^{+\infty} e^{-it\lambda} \int\limits_{-\infty}^{+\infty} f(t-s)g(s)dsdt =$$ [https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A2%D0%BE%D0%BD%D0%B5%D0%BB%D0%BB%D0%B8_%E2%80%94_%D0%A4%D1%83%D0%B1%D0%B8%D0%BD%D0%B8 Т. Фубини] $$= \left( \int\limits_{-\infty}^{+\infty} f(t-s) e^{-i\lambda (t-s)} \left( \int\limits_{-\infty}^{+\infty} g(s) e^{-is\lambda} ds \right) d(t-s)\right) = F(\lambda)G(\lambda).$$ | ||
+ | * $$f(t) \leftrightarrow F(\lambda)$$ <br> $$g(t)\leftrightarrow G(\lambda)$$ <br> $$F(t)\leftrightarrow 2\pi f(-\lambda)$$ <br> $$G(t) \leftrightarrow 2\pi g(-\lambda)$$ <br> $$\qquad \Downarrow$$ | ||
+ | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" | ||
+ | | | ||
+ | $$f(t)g(t)\leftrightarrow \frac{1}{2\pi}(F*G)(\lambda).$$ | ||
+ | |} | ||
+ | ''Распишем:'' $$(F * G)(t) \leftrightarrow 4\pi^2 f(-\lambda)g(-\lambda) \Leftrightarrow \frac{1}{2\pi}(F*G)(t) \leftrightarrow 2\pi f(-\lambda)g(-\lambda).$$ | ||
+ | |||
+ | === Интегрирование === | ||
+ | ---- | ||
+ | |||
+ | $$f(t) \leftrightarrow F(\lambda)$$ | ||
+ | <br> | ||
+ | $$\qquad \Downarrow$$ | ||
+ | <br> | ||
+ | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" | ||
+ | | | ||
+ | $$\int\limits_{-\infty}^{t} f(\xi) d\xi \leftrightarrow \frac{1}{i\lambda}F(\lambda).$$ | ||
+ | |} | ||
− | $$\ | + | Пусть $$\int\limits_{-\infty}^{t} f(\xi) d\xi = g(t)\in L_1(\mathbb{R}), \quad f(t)\in L_1(\mathbb{R}) \Rightarrow g(t)\rightarrow0$$ при $$t\rightarrow \pm\infty$$. |
<br> | <br> | ||
− | $$(f | + | ''Распишем:'' $$\int\limits_{-\infty}^{+\infty} e^{-it\lambda} \int\limits_{-\infty}^{t} f(\xi) d\xi dt = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{t} f(\xi)d\xi \frac{d(e^{-it\lambda})}{-i\lambda}$$ = $$\left.\left( \underbrace{\left( \int\limits_{-\infty}^{t} f(\xi) d\xi\right)}_{g(t)\rightarrow 0} \frac{e^{-it\lambda}}{-i\lambda}\right)\right|_{-\infty}^{+\infty}$$ + $$\int\limits_{-\infty}^{+\infty} f(t) \frac{e^{-it\lambda}}{i\lambda} dt$$ = $$\frac{1}{i\lambda}F(\lambda).$$ |
+ | |||
+ | === Равенство Парсеваля-Планшереля === | ||
+ | ---- | ||
+ | |||
+ | $$f(t) \leftrightarrow F(\lambda)$$ | ||
+ | <br> | ||
+ | $$g(t)\leftrightarrow G(\lambda)$$ | ||
+ | <br> | ||
+ | $$\qquad \Downarrow$$ | ||
+ | <br> | ||
+ | {|style="border-style: solid; border-color: green; background-color:#fefff4; border-width: 1px" | ||
+ | | | ||
+ | $$\int\limits_{-\infty}^{+\infty} F(\lambda)\overline{G(\lambda)}d\lambda = 2\pi \int\limits_{-\infty}^{+\infty} f(t)\overline{g(t)}dt.$$ | ||
+ | |} | ||
+ | |||
+ | ''Распишем:'' $$\int\limits_{-\infty}^{+\infty} F(\lambda)\overline{G(\lambda)}d\lambda = \int\limits_{-\infty}^{+\infty}\left( \int\limits_{-\infty}^{+\infty} f(t) e^{-it\lambda} dt\right) \overline{G(\lambda)}d\lambda =$$ [https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A2%D0%BE%D0%BD%D0%B5%D0%BB%D0%BB%D0%B8_%E2%80%94_%D0%A4%D1%83%D0%B1%D0%B8%D0%BD%D0%B8 Т. Фубини] $$= \int\limits_{-\infty}^{+\infty} f(t) \int\limits_{-\infty}^{+\infty} \overline{G(\lambda) e^{it\lambda}}d\lambda dt = 2\pi \int\limits_{-\infty}^{+\infty} f(t) \underbrace{ \overline{\left( \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} G(\lambda) e^{it\lambda} d\lambda\right)}}_{g(t)} dt = 2\pi \int\limits_{-\infty}^{+\infty} f(t)\overline{g(t)}dt$$. | ||
<br> | <br> | ||
− | + | '''Следствие:''' $$\underbrace{\int\limits_{-\infty}^{+\infty} |F(\lambda)|^2 d\lambda}_{\text{Энергия в пространстве образов}} = 2\pi\underbrace{\int\limits_{-\infty}^{+\infty} |f(t)|^2 dt}_{\text{Энергия в исходном пространстве}}.$$ | |
− |
Текущая версия на 21:34, 4 декабря 2020
Преобразование Фурье — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами (подобно тому, как музыкальный аккорд может быть выражен в виде суммы музыкальных звуков, которые его составляют).
Содержание
Определение
Прямое преобразование
Преобразование Фурье функции $$f(t)$$ вещественной переменной является интегральным и задаётся следующей формулой:
\[ F(\lambda) = \int\limits^{+\infty}_{-\infty} f(t) e^{-i\lambda t} dt, \quad F(\cdot): \mathbb{R}\rightarrow\mathbb{C}. \] |
Обратное преобразование
\[ f(t) = \frac{1}{2\pi} \int\limits^{+\infty}_{-\infty} F(\lambda) e^{i\lambda t} d\lambda, \quad f(\cdot): \mathbb{R}\rightarrow\mathbb{C}. \] |
Cвойства
Обозначим Преобразование Фурье $$f(t) \leftrightarrow F(\lambda)$$, где
- $$\rightarrow$$ прямое
- $$\leftarrow$$ обратное
- Из того, что $$f(x)\in L_1(\mathbb{R})$$ следует, что $$|F(\lambda)| \leq \int\limits^{+\infty}_{-\infty} |f(t)| dt < \infty$$. Отсюда следует, что для $$f(\cdot)\in L_1(\mathbb{R})$$ существует прямое преобразование Фурье. Аналогично для $$F(\lambda)\in L_1(\mathbb{R})$$ следует, что существует обратное преобразование Фурье.
- Пусть $$f(x)$$ - дифференцируемая на $$\mathbb{R}$$ и существует $$\int\limits_{\mathbb{R}} |f(t)| dt < \infty$$ и $$\int\limits_{\mathbb{R}} |f'(t)| dt < \infty$$. Тогда
\[
F(\lambda) = \left(-\frac{1}{i\lambda}\right) f(t)e^{it\lambda}\Bigl|_{-\infty}^{+\infty} + \frac{1}{i\lambda}\int\limits_{-\infty}^{+\infty} f'(t) e^{-it\lambda} dt =\\
= \left\{
\begin{aligned}
& f(+\infty)-f(0) = \int\limits_{0}^{+\infty} f'(t) dt < \infty \Rightarrow \exists f(+\infty) \\
& \text{Если}\quad f(+\infty)\not= 0 \Rightarrow \int\limits_{\mathbb{R}} |f(t)|dt = +\infty\Rightarrow \text{Противоречие} \quad\Rightarrow f(+\infty)= 0
\end{aligned}
\right\} =\\
= \frac{1}{i\lambda}\int_{-\infty}^{+\infty} f'(t) e^{-it\lambda} dt \Rightarrow F(\lambda) \leq \frac{1}{|\lambda|} \int_{-\infty}^{+\infty} |f'(t)|dt = o\left(\frac{1}{|\lambda|}\right).
\]
Аналогично, если $$f(t)\in C^m (\mathbb{R})$$, и существует $$\int\limits_{\mathbb{R}}|f^{(k)}(t)| dt < \infty, \quad \forall k = 1, \ldots m$$, то $$|F(\lambda)|=o\left(\frac{1}{|\lambda|^m}\right)$$ при $$\lambda\rightarrow\pm\infty$$.
Дифференцирование
|
Масштабирование
$$f(\alpha t) \leftrightarrow \frac{1}{|\alpha|}F\left(\frac{1}{\lambda}\right), \quad \alpha\not=0. $$ |
Следствие: Пусть $$\alpha = -1$$. Тогда $$f(-t)\leftrightarrow F(-\lambda) \Rightarrow$$ свойства чётности и нечётности переносится и на преобразование Фурье.
Линейность
$$f(t) \leftrightarrow F(\lambda)$$
$$g(t) \leftrightarrow G(\lambda)$$
$$\qquad \Downarrow$$
$$\forall \alpha, \beta \Rightarrow \alpha f(t) + \beta g(t)\leftrightarrow \alpha F(\lambda) + \beta G(\lambda).$$ |
Симметричность
$$f(t) \leftrightarrow F(\lambda)$$
$$\qquad \Downarrow$$
$$F(t) \leftrightarrow 2\pi f(-\lambda).$$ |
Распишем: $$F(\lambda) = \int\limits_{-\infty}^{+\infty} e^{-it\lambda} f(t) dt = \left\{ \text{Пусть } s=-t\right\} = \int\limits_{-\infty}^{+\infty} e^{is\lambda} f (-s) ds = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} \left(2\pi f(-s)\right) e^{is\lambda}ds$$.
Важно: Не забыть знак и $$2\pi$$.
Сдвиг
$$f(t) \leftrightarrow F(\lambda)$$
$$\qquad \Downarrow$$
$$f(t-t_0)\leftrightarrow F(\lambda) e^{-it_0\lambda}.$$ |
Распишем: Пусть $$g(t) = f(t - t_0)$$.
$$G(\lambda) = \int\limits_{-\infty}^{+\infty} e^{-it\lambda} g(t) dt = \left\{ \begin{aligned} &t-t_0=s \\ &t=t_0+s \end{aligned} \right\} = \underbrace{\int\limits_{-\infty}^{+\infty} e^{-is\lambda} f(s) ds}_{F(\lambda)} \cdot e^{-it_0\lambda}.$$
Тогда $$g(t)\leftrightarrow G(\lambda) = F(\lambda) e^{-it\lambda}$$.
Свёртка (интегральная конволюция)
Для любых $$f(t)$$, $$g(t)$$ выполняется $$(f * g)(t) = \int\limits_{-\infty}^{+\infty} f(t-s)g(s)ds = \int\limits_{-\infty}^{+\infty} f(s) g(t-s) ds$$.
- $$f(t) \leftrightarrow F(\lambda)$$
$$g(t)\leftrightarrow G(\lambda)$$
$$(f * g)(t) \leftrightarrow F(\lambda)G(\lambda).$$ |
Распишем: $$\int\limits_{-\infty}^{+\infty} e^{-it\lambda} \int\limits_{-\infty}^{+\infty} f(t-s)g(s)dsdt =$$ Т. Фубини $$= \left( \int\limits_{-\infty}^{+\infty} f(t-s) e^{-i\lambda (t-s)} \left( \int\limits_{-\infty}^{+\infty} g(s) e^{-is\lambda} ds \right) d(t-s)\right) = F(\lambda)G(\lambda).$$
- $$f(t) \leftrightarrow F(\lambda)$$
$$g(t)\leftrightarrow G(\lambda)$$
$$F(t)\leftrightarrow 2\pi f(-\lambda)$$
$$G(t) \leftrightarrow 2\pi g(-\lambda)$$
$$\qquad \Downarrow$$
$$f(t)g(t)\leftrightarrow \frac{1}{2\pi}(F*G)(\lambda).$$ |
Распишем: $$(F * G)(t) \leftrightarrow 4\pi^2 f(-\lambda)g(-\lambda) \Leftrightarrow \frac{1}{2\pi}(F*G)(t) \leftrightarrow 2\pi f(-\lambda)g(-\lambda).$$
Интегрирование
$$f(t) \leftrightarrow F(\lambda)$$
$$\qquad \Downarrow$$
$$\int\limits_{-\infty}^{t} f(\xi) d\xi \leftrightarrow \frac{1}{i\lambda}F(\lambda).$$ |
Пусть $$\int\limits_{-\infty}^{t} f(\xi) d\xi = g(t)\in L_1(\mathbb{R}), \quad f(t)\in L_1(\mathbb{R}) \Rightarrow g(t)\rightarrow0$$ при $$t\rightarrow \pm\infty$$.
Распишем: $$\int\limits_{-\infty}^{+\infty} e^{-it\lambda} \int\limits_{-\infty}^{t} f(\xi) d\xi dt = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{t} f(\xi)d\xi \frac{d(e^{-it\lambda})}{-i\lambda}$$ = $$\left.\left( \underbrace{\left( \int\limits_{-\infty}^{t} f(\xi) d\xi\right)}_{g(t)\rightarrow 0} \frac{e^{-it\lambda}}{-i\lambda}\right)\right|_{-\infty}^{+\infty}$$ + $$\int\limits_{-\infty}^{+\infty} f(t) \frac{e^{-it\lambda}}{i\lambda} dt$$ = $$\frac{1}{i\lambda}F(\lambda).$$
Равенство Парсеваля-Планшереля
$$f(t) \leftrightarrow F(\lambda)$$
$$g(t)\leftrightarrow G(\lambda)$$
$$\qquad \Downarrow$$
$$\int\limits_{-\infty}^{+\infty} F(\lambda)\overline{G(\lambda)}d\lambda = 2\pi \int\limits_{-\infty}^{+\infty} f(t)\overline{g(t)}dt.$$ |
Распишем: $$\int\limits_{-\infty}^{+\infty} F(\lambda)\overline{G(\lambda)}d\lambda = \int\limits_{-\infty}^{+\infty}\left( \int\limits_{-\infty}^{+\infty} f(t) e^{-it\lambda} dt\right) \overline{G(\lambda)}d\lambda =$$ Т. Фубини $$= \int\limits_{-\infty}^{+\infty} f(t) \int\limits_{-\infty}^{+\infty} \overline{G(\lambda) e^{it\lambda}}d\lambda dt = 2\pi \int\limits_{-\infty}^{+\infty} f(t) \underbrace{ \overline{\left( \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} G(\lambda) e^{it\lambda} d\lambda\right)}}_{g(t)} dt = 2\pi \int\limits_{-\infty}^{+\infty} f(t)\overline{g(t)}dt$$.
Следствие: $$\underbrace{\int\limits_{-\infty}^{+\infty} |F(\lambda)|^2 d\lambda}_{\text{Энергия в пространстве образов}} = 2\pi\underbrace{\int\limits_{-\infty}^{+\infty} |f(t)|^2 dt}_{\text{Энергия в исходном пространстве}}.$$