Решения ОДУ в смысле Каратеодори: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
 
(не показаны 143 промежуточные версии 2 участников)
Строка 2: Строка 2:
 
Рассматривается система дифферинциальных уравнений:
 
Рассматривается система дифферинциальных уравнений:
 
<math>\dot x(t) = f(t, x(t), u(t)).</math>
 
<math>\dot x(t) = f(t, x(t), u(t)).</math>
Мы хотим понять в каком смысле определять траекторию этой системы <math>x(\cdot)</math>, если управление <math>u(\cdot)</math> измеримая функция.
+
Мы хотим понять, в каком смысле определять траекторию этой системы <math>- \ x(\cdot)</math>, если управление <math>- \ u(\cdot)</math> измеримая функция.
  
 
== Условия Каратеодори ==
 
== Условия Каратеодори ==
Строка 9: Строка 9:
 
Пусть <math>(t_0, x^0) \in \mathbb{R} \times \mathbb{R}^n </math> и  <math>\exists a > 0, r > 0</math> такие, что:
 
Пусть <math>(t_0, x^0) \in \mathbb{R} \times \mathbb{R}^n </math> и  <math>\exists a > 0, r > 0</math> такие, что:
  
# Пусть <math>g(t,x)</math> определена для <math>\forall x \in B_r(x_0)</math> и почти всех <math>\forall t \in [t_0-a,t_0+a];</math>
+
# Пусть <math>g(t,x)</math> определена для <math>\forall x \in B_r(x_0)</math> и почти всех <math> t \in [t_0-a,t_0+a];</math>
# <math>g(t,x)</math> измерима по <math>t</math> для всех <math>\forall x \in B_r(x_0)</math>, <math>g(t,x)</math> непрерывна по <math>x</math> для почти всех <math>\dot \forall t \in [t_0-a, t_0+a];</math>
+
# <math>g(t,x)</math> измерима по <math>t</math> для <math>\forall x \in B_r(x^0)</math>, <math>g(t,x)</math> непрерывна по <math>x</math> для <math>\dot \forall t \in [t_0-a, t_0+a];</math>
# <math>\exists m(\cdot) -- </math>  интегрируема по Лебегу при <math>t \in t[t_0-a,  t_0+a]</math> такая, что  
+
# <math>\exists m(\cdot) </math>  интегрируема по Лебегу при <math>t \in [t_0-a,  t_0+a]</math> такая, что:
<math> ||g(t,x)|| \geq m(t), \forall x \in B_r(x^{0}), \dot \forall t \in [t_0-a, t_0+a]; </math>
+
\begin{equation*}
 +
||g(t,x)|| \leq m(t), \forall x \in B_r(x^{0}), \dot \forall t \in [t_0-a, t_0+a].
 +
\end{equation*}
 
   
 
   
Эти три условия и называются условиями Каратеодори.
+
Эти три условия и называются условиями [https://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D0%B0%D1%82%D0%B5%D0%BE%D0%B4%D0%BE%D1%80%D0%B8,_%D0%9A%D0%BE%D0%BD%D1%81%D1%82%D0%B0%D0%BD%D1%82%D0%B8%D0%BD Каратеодори].
 +
 
 
== Абсолютно непрерывные функции ==
 
== Абсолютно непрерывные функции ==
 
Мы бы хотели найти решение задачи Коши  
 
Мы бы хотели найти решение задачи Коши  
\begin{equation*}
+
\begin{equation}\label{syst}
X(\omega) =
 
 
  \begin{cases}
 
  \begin{cases}
   \dot x(t) = g(t, x(t))\\
+
   \dot x(t) = g(t, x(t)),\\
 
   x(t_0) = x^0,
 
   x(t_0) = x^0,
 
  \end{cases}
 
  \end{cases}
\end{equation*}  
+
\end{equation}  
 
в следующем классе функций:
 
в следующем классе функций:
# <math> x(\cdot) \in C; </math>
+
# <math> x(\cdot) \in C[t_0-a, t_0+a]; </math>
# для почти всех <math> \dot \forall t</math> существует <math> \exists \dot x </math>
+
# для почти всех <math> \dot \forall t</math> существует <math> \exists \dot x </math> и выполнено <math> \dot x(t) = g(t, x(t))</math>.
# для почти всех <math> \dot \forall t</math> выолнено <math> \dot x(t) = g(t, x(t))</math>.
+
Покажем, что условий Каратеодори самих по себе недостаточно для определения решения. Рассмотрим следующий пример
Покажем, что условий Каратеодори самих по себе недостаточно для определения решения. Рассмотрим следующий пример (тут будет картинка)
 
 
\begin{equation*}
 
\begin{equation*}
X(\omega) =
 
 
  \begin{cases}
 
  \begin{cases}
   \dot x(t) = 0\\
+
   \dot x(t) = 0,\\
   x(0) = 0,
+
   x(0) = 0.
 
  \end{cases}
 
  \end{cases}
 
\end{equation*}  
 
\end{equation*}  
Очевидно, что решение системы <math> x \equiv </math>. Но такое решение в рассматриваемом классе не единственно. Рассмотрим лестницу Кантора, она так же будет являться решением этой системы при наложенных ранее ограничениях.
+
Очевидно, что <math>x \equiv 0</math> является решением системы. Такое решение в рассматриваемом классе не единственно. Рассмотрим лестницу Кантора, она так же будет являться решением этой системы при наложенных ранее ограничениях.
Чтобы избежать неоднозначности из-за различных сингулярных частей в функции, наложим дополнительные ограничения на $x$:
+
 
<math> x(\cdot) -- /text{решение системы} \Leftrightarrow </math>  
+
Чтобы избежать неоднозначности из-за различных сингулярных частей в функции, наложим дополнительные ограничения на <math> x </math> :<br> $$ x(\cdot) $$  решение системы <math>\Leftrightarrow </math> для всех <math>\forall t</math> выполнено
для всех $\forall t$ выполнено
+
\begin{equation*}
<math>// x(t) = x^0 + \int_{t_0}^{t} g(\tau, x(\tau)) \,d\tau.</math>
+
    x(t) = x^0 + \int_{t_0}^{t} g(\tau, x(\tau)) \,d\tau. \\
Из курса функционального анализа известно, что если <math> z(\cdot) -- </math> измерима, то для любого <math> \epsilon > 0</math> существует <math> \exists \delta(\epsilon) > 0: //</math>
+
\end{equation*}
<math> \forall: \mu Z \geq \delta \Rightarrow \int_{\tau} z(\tau) \,d\tau \geq \epsilon </math>,
+
 
что обозначает абсолютную непрерывность интеграла Лебега.
+
Из курса функционального анализа [3] известно, что если <math> z(\cdot) </math> измерима, то для любого <math> \varepsilon > 0</math> существует <math> \exists \delta(\varepsilon) > 0: </math>
Тогда можем заменить условие 3) в условиях Каратеодори на следующие два:
+
\begin{equation*}
3')  <math> \dot x -- </math> интегрируема по Лебегу;
+
\forall Z \text{ измеримого}: \mu (Z) \leq \delta \Rightarrow \int_{\tau \in Z} z(\tau) \,d\tau \leq \varepsilon,\\
 +
\end{equation*}
 +
что обозначает абсолютную непрерывность интеграла Лебега.<br>
 +
Тогда можем заменить условие 3) в условиях Каратеодори на следующие два:<br>
 +
3')  <math> \dot x </math> интегрируема по Лебегу;<br>
 
4) Для всех <math> \forall t \in [t_0-a, t_0+a] \Rightarrow
 
4) Для всех <math> \forall t \in [t_0-a, t_0+a] \Rightarrow
x(t) = x^0 + \int_{t_0}^{t} \dot x(\tau) \,d\tau. </math>
+
x(t) = x^0 + \int_{t_0}^{t} \dot x(\tau) \,d\tau. </math> <br>
Введем важное определение
+
 
Опр1(сделать красиво). Функции, удовлетворяющие условиям 1) 2) 3') и 4) будем называть абсолютно непрерывными, а класс таких функций будем обозначать AC[t_0-a, t_0+a] от англ. absolutely continuous.
+
Введём следующие определения: <br>
В курсе математического анализа, это определение вводиться по-другому  
+
 
ОПР1' Будем говорить, что <math> x(\cdot) \in AC[\tau, \tau_1],
+
''Определение 1''. Функции, удовлетворяющие условиям 1), 2), 3'), 4) будем называть ''абсолютно непрерывными'', а класс таких функций будем обозначать <math> AC[t_0-a, t_0+a] </math> (от англ. ''absolutely continuous'').
</math> если для любого <math> \epsilon > 0 </math> существует <math> \delta(\epsilon) > 0: \forall \tau_1^', \dots, \tau_k^',
+
В курсе математического анализа, это определение вводится по-другому. <br>
\tau_1^{''}, \dots, \tau_k^{''} <math> таких, что  
+
 
<math> \tau_0 \geq \tau_1^' \geq \tau_1^{''} \geq \dots \geq \tau_k^' \geq \tau_k^{''} \geq \tau_1 </math> выполнено:
+
''Определение 1'''.  Будем говорить, что <math> x(\cdot) \in AC[\tau_0, \tau_1],
<math> // \sum_{j=1}^{k}|\tau_j^{''}-\tau_j^{'}| \Rightarrow  
+
</math> если для любого <math> \forall \varepsilon > 0 </math> существует <math> \exists \delta(\varepsilon) > 0: </math> <br>  <math> \forall \tau_{1}^{'}, </math> <math>  \dots, \tau_k^{'}, \tau_1^{''}, \dots, \tau_k^{''}</math> таких, что  
\sum_{j=1}^{k}||x(\tau_j^{''})-x(\tau_j^{'}) || \geq epsilon </math>
+
\begin{equation*}
Так же из курса математического анализа известна эквивалентность этих определений.
+
\tau_0 \leq \tau_1^{'} < \tau_1^{''} \dots < \tau_k^{'} < \tau_k^{''} \leq \tau_1,
 +
\end{equation*}
 +
выполнено: <math> \sum_{j=1}^{k}|\tau_j^{''}-\tau_j^{'}|<\delta \Rightarrow \sum_{j=1}^{k}||x(\tau_j^{''})-x(\tau_j^{'}) || \leq \varepsilon. </math>
 +
Так же из курса математического анализа известна эквивалентность этих определений, подробнее можно узнать в [3].
 +
 
 +
''Замечание''. Абсолютно непрерывные функции являются непрерывными и равномерно непрерывными, но при этом не обязаны быть дифференцируемыми. В качестве контрпримера можно рассмотреть одномерную функцию $$f(x) = |x|.$$
  
Замечание. Абсолютно непрерывные функции являются непрерывными и равномерно непрерывными, но при этом не обязаны быть дифференцируемыми. В качестве контрпримера можно рассмотреть одномерную функцию $f(x) = |x|.$
 
 
Так же известно, что  
 
Так же известно, что  
$// Lip[\tau_0, \tau_1] \subseteq AC[\tau_0, tau_1], //$
+
$$ \text{Lip}[\tau_0, \tau_1] \subset AC[\tau_0, \tau_1], $$
 
поскольку  
 
поскольку  
$// ||x(\tau'')-x(\tau') || \geq L |\tau''-\tau'| \Rightarrow \delta(\epsilon) = \frac{\epsilon}{L}.$
+
\begin{equation*}
Данное вложение является строгим рассмотреть пример $x(t) = t^{\alpha}, 0 < \alpha < 1.$
+
||x(\tau'')-x(\tau') || \leq L |\tau''-\tau'| \Rightarrow \delta(\varepsilon) = \frac{\varepsilon}{L}.
С учетом этих определений сформулируем новое определение.
+
\end{equation*}
ОПР3. Решением системы на $t_0-a \geq \tau_0 < \tau_1 \geq t_0+a, t_0 \in [\tau_0, \tau_1]$ по Каратеодори называется функция $x(\cdot),$ удовлетворяющая следующим критериям:
+
Данное вложение является строгим, пример: $$x(t) = t^{\alpha}, 0 < \alpha < 1.$$
 +
<br>
 +
С учетом этих определений сформулируем новое определение.<br>
 +
 
 +
''Определение 2''. Решением системы на $$t_0-a \leq \tau_0 < \tau_1 \leq t_0+a, t_0 \in [\tau_0, \tau_1]$$ по Каратеодори называется функция $$x(\cdot),$$ удовлетворяющая следующим критериям:
 
# <math> x(\cdot) \in AC[\tau_0,\tau_1];</math>
 
# <math> x(\cdot) \in AC[\tau_0,\tau_1];</math>
# <math>x(t_0) = x^{0} </math>
+
# <math>x(t_0) = x^{0}; </math>
 
# для почти всех <math> \dot \forall t \in (\tau_0, \tau_1) \Rightarrow \dot x(t) = g(t,x(t)). </math>
 
# для почти всех <math> \dot \forall t \in (\tau_0, \tau_1) \Rightarrow \dot x(t) = g(t,x(t)). </math>
 +
''Замечание''. Лестница Кантора не является абсолютно непрерывной. Так как мера точек роста функции равна нулю, то можно найти для любого <math> \delta>0 </math> можно покрыть это множество непересекающимися отрезками. Поэтому для <math> \varepsilon = \frac{1}{2} </math>, будет нарушено определение, так как рост на отрезке [0,1] лестницы Кантора равен <math>1 > \frac{1}{2} </math>.
 +
 
== Существование решения по Каратеодори ==
 
== Существование решения по Каратеодори ==
Для доказательства основной теоремы о существовании нам потребуется сформулировать несколько вспомогательных теорем.
+
Для доказательства основной теоремы о существовании нам потребуется сформулировать несколько вспомогательных теорем.<br>
ТЕОРЕМА1(Scorza Dragoni G., 1948). Пусть  <math> g(t,x) -- </math>
+
'''Теорема 1'''(Scorza Dragoni G., 1948). Пусть  <math> g(t,x) </math>
измерима по $t$ для всех <math> \forall x \in B_r(x^0)</math> и непрерывна по <math>x</math> для почти всех <math> \dot \forall t \in [\tau_0, \tau_1]. Тогда <math> \forall \epsilon \Rightarroy \exists K \subseteq [\tau_0, \tau_1], K -- </math> компакт, такой что  
+
измерима по $$t$$ для всех <math> \forall x \in B_r(x^0)</math> и непрерывна по <math>x</math> для почти всех <math> \dot \forall t \in [\tau_0, \tau_1]. </math>
<math> \mu([\tau_0, \tau_1] \setminus K) \leq \epsilon </math>
+
Тогда $$\forall \varepsilon$$ $$ \Rightarrow  \exists K \subseteq [\tau_0, \tau_1], K $$ компакт, такой что  
и  <math>g(t,x) </math> суженная на  <math> K\times B_r(x^0) </math> непрерывна по  <math>(t,x) </math>
+
\begin{equation*}
ТЕОРЕМА2(Критерий измеримости Лузина). Функция <math> z(t)--</math> измерима на <math> t \in [\tau_0, \tau_1] \Longleftrightarrow \forall \epsilon > 0 \exists K \subseteq [\tau_0, \tau_1], K -- </math> компакт такой, что  
+
\mu ([\tau_0, \tau_1] \setminus K) \leq \varepsilon
<math> \mu([\tau_0, \tau_1] \setminus K) \leq \epsilon </math>
+
\end{equation*}
и  <math>z(t) </math> суженная на  <math> K.
+
и  <math> g(t,x) </math> суженная на  <math> K\times B_r(x^0) </math> непрерывна по  <math>(t,x) </math>
Замечание3. Из теоремы Луиза следует, что для <math> g(t,x)</math>
+
<br>
существует <math>K(x)</math>, а из Scorza Dragoni следует существования универсального <math>K</math>(на шаре).
+
'''Теорема 2'''(Критерий измеримости Лузина). Функция <math> z(t) </math> измерима на <math> t \in [\tau_0, \tau_1] \Longleftrightarrow \forall \varepsilon > 0 \ \exists K \subseteq [\tau_0, \tau_1], K </math> компакт такой, что  
Следствие 1(Частный случай Scorza Dragoni) Если <math> g(t,x)--
+
\begin{equation*}
</math> измерима по <math>t</math> для всех <math>\forall x </math>, непрерывна по <math> x </math> для почти всех <math>\dot \forall t</math>,а <math>x(\cdot)</math> измерима, то функция <math>g(t,x(t)) --</math> измерима по <math> t</math>
+
\mu ([\tau_0, \tau_1] \setminus K) \leq \varepsilon
Доказательсво. Функция <math>u(\cdot) -- </math> измерима, следовательно, из критерия Лузина <math>\forall \epsilon > 0 \exists K \subseteq [t_0-h, t_0+h], K </math> компакт:
+
\end{equation*}
<math>\mu([\tau_0,\tau_1] \setminusK) \leq \epsilon </math>
+
и  <math>z(t) </math> суженная на  <math> K </math> непрерывна. <br>
и <math> u </math> при сужении на <math> K -- </math> непрерывна.
+
''Доказательство''. Можно найти в [3].
 +
<br>
 +
''Замечание 3''. Из теоремы Лузина следует, что для <math> g(t,x)</math>
 +
существует <math>K(x)</math>, а из теоремы 1 следует существование универсального <math>K</math>(на шаре).
 +
<br>
 +
'''Следствие 1'''.(Частный случай Scorza Dragoni) Если <math> g(t,x)
 +
</math> измерима по <math>t</math> для всех <math>\forall x </math>, непрерывна по <math> x </math> для почти всех <math>\dot \forall t</math>,а <math>x(\cdot)</math> измерима, то функция <math>g(t,x(t)) </math> измерима по <math> t. </math>
 +
<br>
 +
''Доказательство''. Функция <math>u(\cdot) </math> измерима, следовательно, из критерия Лузина <math>\forall \varepsilon > 0 \exists K \subseteq [t_0-h, t_0+h], K </math> компакт:
 +
<math>\mu([\tau_0,\tau_1] \setminus K) \leq \varepsilon </math>
 +
и <math> u </math> при сужении на <math> K </math> непрерывна.
 
Тогда  
 
Тогда  
<math> z(\tau) = g(\tau, x^{(k)}(\tau)) = f(\tau, x^{(k)}(\tau),u(\tau))</math>
+
\begin{equation*}
непрерывна на <math>K</math>, а значит, <math> z(\cdot)-- </math>
+
z(\tau) = g(\tau, x^{(k)}(\tau)) = f(\tau, x^{(k)}(\tau),u(\tau))
измерима.
+
\end{equation*}
 +
непрерывна на <math>K</math>, а значит, <math> z(\cdot) </math>
 +
измерима.<math>\blacksquare</math>
 +
<br>
 
Теперь можно сформулировать теорему о существовании решения.
 
Теперь можно сформулировать теорему о существовании решения.
ТЕОРЕМА3(Существование решения исходной системы). Пусть <math> 0 < h \leq a </math> и
+
<br>
<math> \int_{t_0}^{t_0+h}m(\tau)d\tau \leq r, \int_{t_0-h}^{t_0}m(\tau)d\tau \leq r. </math>
+
'''Теорема 3'''(Существование решения исходной системы). Пусть <math> 0 < h \leq a </math> и
Тогда существует <math> \exists x(\cdot) \in AC[t_0-h, t_0+h]--
+
\begin{equation*}
 +
\int_{t_0}^{t_0+h}m(\tau)d\tau \leq r, \int_{t_0-h}^{t_0}m(\tau)d\tau \leq r.  
 +
\end{equation*}
 +
Тогда существует <math> \exists x(\cdot) \in AC[t_0-h, t_0+h]
 
</math> решение по Каратеодори исходной системы ДУ в смысле Каратеодори.
 
</math> решение по Каратеодори исходной системы ДУ в смысле Каратеодори.
ДОКАЗАТЕЛЬСТВО. Выпишем следующую последовательность функций:
+
<br>
<math> x^{(0)}(t) \equiv x^{0}, </math>
+
''Доказательство.'' Выпишем следующую последовательность функций:
<math> x^{(k+1)}(t) = x^{0}+\int_{t_0}^{t}g(\tau,x^{(k)}(k))d\tau. </math>
+
\begin{equation*}
Элементы этой последовательности определены корректно, поскольку <math> g(\tau, x^{(k)}(\tau)) </math> измеримы по <math> \tau </math> в силу следствия 1, ограничены интегрируемой функцией <math> m(t) </math> (по условию теоремы) и, следовательно интегрируем по Лебегу. При этом <math> x^{(k)}(\cdot) \in C \Rightarroyx^{(k)}(\cdot) \in AC </math>.
+
x^{(0)}(t) \equiv x^{0},
 +
\end{equation*}
 +
\begin{equation*}
 +
x^{(k+1)}(t) = x^{0}+\int_{t_0}^{t}g(\tau,x^{(k)}(k))d\tau.
 +
\end{equation*}
 +
Элементы этой последовательности определены корректно, поскольку <math> g(\tau, x^{(k)}(\tau)) </math> измеримы по <math> \tau </math> в силу следствия 1, ограничены интегрируемой функцией <math> m(t) </math> (по условию теоремы) и, следовательно, интегрируем по Лебегу. При этом <math> x^{(k)}(\cdot) \in C \Rightarrow x^{(k)}(\cdot) \in AC </math>.
 
Для того, чтобы воспользоваться теоремой Арцела-Асколи, нам необходимо показать равностепенную непрерывность и равномерную ограниченность последовательности.
 
Для того, чтобы воспользоваться теоремой Арцела-Асколи, нам необходимо показать равностепенную непрерывность и равномерную ограниченность последовательности.
  
Равномерная ограниченность (при $t \geq t_0,$ для $t \leq t_0--$)
+
Равномерная ограниченность (при $$t \geq t_0,$$ для $$t \leq t_0$$)
 
аналогично):
 
аналогично):
  <math> ||x^{(k+1)}(t)-x^{0}|| \geq \int_{t_0}^{t}||g(\tau,x^{(k)}(\tau))||d\tau \leq \int_{t_0}^{t}m(\tau) d\tau \leq r.</math>
+
  <math> ||x^{(k+1)}(t)-x^{0}|| \leq \int_{t_0}^{t}||g(\tau,x^{(k)}(\tau))||d\tau \leq \int_{t_0}^{t}m(\tau) d\tau \leq r.</math>
 
Покажем равностепенную непрерывность:
 
Покажем равностепенную непрерывность:
<math> \forall \epsilon > 0 \exists \delta(\epsilon): \forall t;, t'': |t'-t''|\leq \delta</math>
+
<math> \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0: \ \forall t', t'' \in [t_0-h,t_0+h], \ t'\leq t'': |t'-t''|\leq \delta</math>
<math> \forrall n \in \mathbb{N} \Rightarrow ||x^{(n)}(t'')-x^{(n)}(t')||\leq \epsilon?</math>
+
\begin{equation*}
 +
\forall n \in \mathbb{N} \Rightarrow ||x^{(n)}(t'')-x^{(n)}(t')||\leq \varepsilon?
 +
\end{equation*}
 
Для нашей последовательности  
 
Для нашей последовательности  
<math> ||x^{(n)}(t'')-x^{(n)}(t')||= || \int_{t'}^{t''}g(s),x^{(n-1)}(s)ds||\leq \int_{t'}^{t''}m(s)ds \leq \epsilon </math>
+
\begin{equation*}
 +
||x^{(n)}(t'')-x^{(n)}(t')||= || \int_{t'}^{t''}g(s, x^{(n-1)}(s))ds||\leq \int_{t'}^{t''}m(s)ds \leq \varepsilon
 +
\end{equation*}
 
в силу абсолютной непрерывности интеграла Лебега.
 
в силу абсолютной непрерывности интеграла Лебега.
 
Тогда последовательность непрерывных функций <math> x^{(k)}(\cdot) </math> равностепенно непрерывно и равномерно ограничено и, в силу теоремы Арцела-Асколи,
 
Тогда последовательность непрерывных функций <math> x^{(k)}(\cdot) </math> равностепенно непрерывно и равномерно ограничено и, в силу теоремы Арцела-Асколи,
<math> x^{(k)}\rightleftharpoons x(\cdot).  </math>
+
<math> x^{(k)} \rightrightarrows x(\cdot).  </math>
 
При этом  
 
При этом  
<math> || x^{(k)}(\cdot)-x(\cdot)||_C = max_{t\in [t_0-h,t_0+h]}|| x^{(k)}(t)-x(t)||, </math>
+
\begin{equation*}
то есть сходимость в С аналогична равномерной сходимости, и <math>  x(\cdot) \in C.</math>
+
  || x^{(k)}(\cdot)-x(\cdot)||_C = \max_{t\in [t_0-h,t_0+h]}|| x^{(k)}(t)-x(t)||,
 +
\end{equation*}
 +
то есть сходимость в С аналогична равномерной сходимости, и <math>  x(\cdot) \in C[t_0-h, t_0+h].</math>
 
Наконец, переходим к пределу в итеративной последовательности:
 
Наконец, переходим к пределу в итеративной последовательности:
 
<math>  x(t) = x^{0} + \int_{t_0}^{t}g(s,x(s))ds, x(\cdot) \in AC[t_0-h, t_0+h].</math>
 
<math>  x(t) = x^{0} + \int_{t_0}^{t}g(s,x(s))ds, x(\cdot) \in AC[t_0-h, t_0+h].</math>
Теорема доказана.
+
Теорема доказана.<math>\blacksquare</math>
  
 
== Единственность решения ==
 
== Единственность решения ==
 
Для единственности решения мы обычно требуем липшицевость по <math> x \text{:} </math>:
 
Для единственности решения мы обычно требуем липшицевость по <math> x \text{:} </math>:
<math> || g(t,x^{''} - g(t,x^{'}))|| \leq L(t)||x^{''} - x^{'}||  </math>
+
<math> || g(t,x'' - g(t,x'))|| \leq L(t)||x'' - x'||  </math>
 
Где <math>L(t) -</math> интегрируема по Лебегу.<br>
 
Где <math>L(t) -</math> интегрируема по Лебегу.<br>
 
Ослабив это условие, добавим его к списку условий Каратеодори 1)-3): <br>
 
Ослабив это условие, добавим его к списку условий Каратеодори 1)-3): <br>
<math> 4) \ \ \forall x^{'}, x^{''} \ \ \exists L(t) - </math> интегрируема по Лебегу:
+
<math> 4) \ \ \forall x', x'' \ \ \exists L(t) - </math> интегрируема по Лебегу:
<math> \langle g(t,x^{''}) - g(t,x^{'}), x^{''} - x^{'} \rangle \leq L(t)||x^{''} - x^{'} ||.</math>
+
<math> \langle g(t,x'') - g(t,x'), x'' - x' \rangle \leq L(t)||x'' - x' ||.</math>
 
Нетрудно показать что всякая липшицевая по <math>x</math> функция удовлетворяет этому условию в силу неравенства Коши-Буняковсвого-Шварца.<br>
 
Нетрудно показать что всякая липшицевая по <math>x</math> функция удовлетворяет этому условию в силу неравенства Коши-Буняковсвого-Шварца.<br>
 
'''Теорема 4''' (Теорема о единственности решения по Каратеодори).<br>
 
'''Теорема 4''' (Теорема о единственности решения по Каратеодори).<br>
''Пусть выполнены условия Каратеодори '''1),2),3)''' а так же '''4)'''. Тогда решение по Каратеодори задачи Коши (1) единственно.''<br>
+
''Пусть выполнены условия Каратеодори '''1),2),3)''' а так же '''4)'''. Тогда решение по Каратеодори [[Решения ОДУ в смысле Каратеодори#Абсолютно непрерывные функции|задачи Коши]] единственно.''<br>
''Доказательтво:'' <br>Предположим противное. Пусть <math>x^{'}(t)</math> и <math>x^{''}(t) - </math> два различных решения (1) на <math>[t_{0}, t_{0} + h]</math>. Рассмотрим вспомогательную функцию:
+
''Доказательтво:'' <br>Предположим противное. Пусть <math>x'(t)</math> и <math>x''(t) - </math> два различных решения [[Решения ОДУ в смысле Каратеодори#Абсолютно непрерывные функции|задачи Коши]] на <math>[t_{0}, t_{0} + h]</math>. Рассмотрим вспомогательную функцию:
<math>z(t) = ||x^{''}(t) - x^{'}(t)||^{2} = \langle x^{''}(t) - x^{'}(t),x^{''}(t) - x^{'}(t) \rangle.</math>
+
<math>z(t) = ||x''(t) - x'(t)||^{2} = \langle x''(t) - x'(t),x''(t) - x'(t) \rangle.</math>
 
Она дифференцируема почти всюду, и для п.в. <math>t</math>:
 
Она дифференцируема почти всюду, и для п.в. <math>t</math>:
<math> \frac{dz}{dt} = 2 \langle  g(t,x^{''}),g(t,x^{'}),x^{''}(t) - x^{'}(t) \rangle \leq 2L(t)z(t).</math>
+
<math> \frac{dz}{dt} = 2 \langle  g(t,x''),g(t,x'),x''(t) - x'(t) \rangle \leq 2L(t)z(t).</math>
 
При этом <math>z(t_{0}) = 0 \ \ </math>(из определения <math> z</math>). Тогда неравенство:
 
При этом <math>z(t_{0}) = 0 \ \ </math>(из определения <math> z</math>). Тогда неравенство:
 
<math> \frac{dz}{dt} - 2L(t)z(t) \leq 0</math>
 
<math> \frac{dz}{dt} - 2L(t)z(t) \leq 0</math>
 
домножим на <math> \exp \{\int_{t_{0}}^{t} L(\xi)d\xi \}:</math>:
 
домножим на <math> \exp \{\int_{t_{0}}^{t} L(\xi)d\xi \}:</math>:
 
<math> \frac{d}{dt}(z(t)e^{-2\int_{t_{0}}^{t}L(\xi)d\xi}) \leq 0 </math>
 
<math> \frac{d}{dt}(z(t)e^{-2\int_{t_{0}}^{t}L(\xi)d\xi}) \leq 0 </math>
для п.в. (верно там, где она дифференцируема). Проинтегрировав получаем:
+
для п.в. <math>t</math> (верно там, где она дифференцируема). Проинтегрировав получаем:
 
<math> 0 \leq z(t) e^{-2\int_{t_{0}}^{t}L(\xi)d\xi} \leq 0. </math>
 
<math> 0 \leq z(t) e^{-2\int_{t_{0}}^{t}L(\xi)d\xi} \leq 0. </math>
Левое неравенство достигается в силу определения <math>z</math>, а правое следует из того факта, что производная отрицательная, а значит <math>z(t_{0}) = 0.</math> Тогда в обоих случаях достигаются равенства, и функции совпадают.
+
Левое неравенство достигается в силу определения <math>z</math>, а правое следует из того факта, что производная отрицательная, а значит <math>z(t_{0}) = 0.</math> Тогда в обоих случаях достигаются равенства, и функции совпадают.<br>
 +
Теорема доказана. <math>\blacksquare</math>
 
== Продолжимость решения ==
 
== Продолжимость решения ==
 
В случае с решением по Каратеодори также возникает вопрос продожимости решения вправо. В условиях Каратеодори есть ограниченность интегрируемой функции, в теореме о существовании решении мы ограничили интеграл от этой функции <math>m(\cdot)</math> значением <math>r</math>. Разве этого не достаточно? Оказывается, нет.<br>
 
В случае с решением по Каратеодори также возникает вопрос продожимости решения вправо. В условиях Каратеодори есть ограниченность интегрируемой функции, в теореме о существовании решении мы ограничили интеграл от этой функции <math>m(\cdot)</math> значением <math>r</math>. Разве этого не достаточно? Оказывается, нет.<br>
Строка 165: Строка 207:
 
Покажем, что непродолжимость решения может возникать только в случае неограниченного роста функции. Введем обозначения:
 
Покажем, что непродолжимость решения может возникать только в случае неограниченного роста функции. Введем обозначения:
 
\begin{equation}
 
\begin{equation}
\overset{-}{\tau} = \sup \{ \tau \in (t_{0}, t_{0} + a): \exists x(\cdot) - \text{решение ЗК (1) при } t \in [t_{0}, \tau]\},
+
\overline{\tau} = \sup \{ \tau \in (t_{0}, t_{0} + a): \exists x(\cdot) - \text{ при } t \in [t_{0}, \tau]\},
 
\end{equation}
 
\end{equation}
 
\begin{equation}
 
\begin{equation}
\underset{-}{\tau}= \inf \{ \tau \in (t_{0} - a, t_{0}): \exists x(\cdot) - \text{решение ЗК (1) при } t \in [\tau,t_{0}]\}.
+
\underline{\tau}= \inf \{ \tau \in (t_{0} - a, t_{0}): \exists x(\cdot) - \text{ при } t \in [\tau,t_{0}]\}.
 
\end{equation}
 
\end{equation}
Введенные обозначения корректны, поскольку множества непусты в силу существования решения и его ограниченности на отрезке (функции непрерывны).<br>
+
Где <math>x(\cdot)</math> решение задачи Коши (\ref{syst}). Введенные обозначения корректны, поскольку множества непусты в силу существования решения и его ограниченности на отрезке (функции непрерывны).<br>
 
'''Теорема 5.'''<br>
 
'''Теорема 5.'''<br>
''Пусть <math>\overset{-}{\tau} < t_0 + a \ (\underset{-}{\tau} > t_0 - a). </math> Тогда для <math>\forall r > 0 \ \exists \tau \in (t_0, \overset{-}{\tau}) (\tau \in (\underset{-}{\tau}, t_0)) </math> такое, что <math> ||x(\tau) - x^0|| = r.</math>''<br>
+
''Пусть <math>\overline{\tau} < t_0 + a \ (\underline{\tau} > t_0 - a). </math> Тогда для <math>\forall r > 0 \ \exists \tau \in (t_0, \overline{\tau}) (\tau \in (\underline{\tau}, t_0)) </math> такое, что <math> ||x(\tau) - x^0|| = r.</math>''<br>
 
''Доказательство.''<br>  
 
''Доказательство.''<br>  
Предположим противное. Пусть <math>\exists \overset{-}{r} > 0: \forall \tau \in (t_0, \overset{-}{\tau}) \Rightarrow ||x(\tau) - x^0|| < \overset{-}{r}. </math><br>
+
Предположим противное. Пусть <math>\exists \overline{r} > 0: \forall \tau \in (t_0, \overline{\tau}) \Rightarrow ||x(\tau) - x^0|| < \overline{r}. </math><br>
Пусть <math>\Delta > 0, r = \overset{-}{r} + \Delta,</math> тогда <math>\forall t \in [t_0, \overset{-}{\tau})  </math> верно
+
Пусть <math>\Delta > 0, r = \overline{r} + \Delta,</math> тогда <math>\forall t \in [t_0, \overline{\tau})  </math> верно
 
\begin{equation*}
 
\begin{equation*}
 
B_\Delta (x(t)) \subseteq B_r(x^0).
 
B_\Delta (x(t)) \subseteq B_r(x^0).
 
\end{equation*}
 
\end{equation*}
Возьмем <math>\delta = t_0 + a - \overset{-}{\tau} > 0. </math> Тогда <math>\overset{-}{\tau} + \delta < t_0 + a. </math><br>
+
Возьмем <math>\delta = t_0 + a - \overline{\tau} > 0. </math> Тогда <math>\overline{\tau} + \delta < t_0 + a. </math><br>
Для любого <math>\forall \tau \in [t_0, \overset{-}{\tau}) \Rightarrow [\tau - \delta, \tau + \delta]\times B_\Delta(x(\tau)) \subseteq [t_0 - a, t_0 + a]\times B_r(x^0). </math><br>
+
Для любого <math>\forall \tau \in [t_0, \overline{\tau}) \Rightarrow [\tau - \delta, \tau + \delta]\times B_\Delta(x(\tau)) \subseteq [t_0 - a, t_0 + a]\times B_r(x^0). </math><br>
Существует <math>\exists h > 0, h < \delta: \int_{\tau}^{\tau+h}m(s)ds \leq \Delta. </math> При этом получается, что <math>h-</math> не зависит от <math>\tau</math> (в силу абсолютной непрерывности интеграла Лебега). То есть мы нашли универсальный шаг, на который можем продвигаться при построении решения<math>:</math> <math>h- </math> универсально для всех <math>\tau \in [t_0, \overset{-}{\tau}),</math> то есть мы можем проинтегрировать <math>x(\cdot) </math> до момента <math>\tau + h </math> для любого <math>\tau. </math> По определению <math>\overset{-}{\tau}- </math> это супремум всех моментов времени, когда существует решение. Из определения супремума <math>: \exists \tau: \overset{-}{\tau} - \tau < h/2. </math> Для этого <math>\tau </math> проинтегрируем систему до <math>\tau + h. </math> Но тогда получается, что <math>\tau + h > \overset{-}{\tau}, </math> что приводит нас к противоречию. <br>
+
Существует <math>\exists h > 0, h < \delta: \int_{\tau}^{\tau+h}m(s)ds \leq \Delta. </math> При этом получается, что <math>h \ -</math> не зависит от <math>\tau</math> (в силу абсолютной непрерывности интеграла Лебега). То есть мы нашли универсальный шаг, на который можем продвигаться при построении решения<math>:</math> <math>h \ - </math> универсально для всех <math>\tau \in [t_0, \overline{\tau}),</math> то есть мы можем проинтегрировать <math>x(\cdot) </math> до момента <math>\tau + h </math> для любого <math>\tau. </math> По определению <math>\overline{\tau} \ - </math> это супремум всех моментов времени, когда существует решение. Из определения супремума <math>: \exists \tau: \overline{\tau} - \tau < h/2. </math> Для этого <math>\tau </math> проинтегрируем систему до <math>\tau + h. </math> Но тогда получается, что <math>\tau + h > \overline{\tau}, </math> что приводит нас к противоречию. <br>
Теорема доказана.<br>
+
Теорема доказана.<math>\blacksquare</math><br>
 
Отбросим теперь в условиях Каратеодори условие с <math>a</math> и заменим отрезок времени на <math>[t_0,t_1] </math> либо <math>\R </math> (в 1) и 2)) и добавим условие продолжимости вправо(влево).
 
Отбросим теперь в условиях Каратеодори условие с <math>a</math> и заменим отрезок времени на <math>[t_0,t_1] </math> либо <math>\R </math> (в 1) и 2)) и добавим условие продолжимости вправо(влево).
 
\begin{equation}
 
\begin{equation}
\langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x,\alpha,\beta = const >0
+
\langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x;\alpha,\beta = \text{const} >0
 
\end{equation}
 
\end{equation}
 
\begin{equation*}
 
\begin{equation*}
Строка 192: Строка 234:
 
Условие продолжимости в обе стороны (условие сублинейного роста)<math>:</math>
 
Условие продолжимости в обе стороны (условие сублинейного роста)<math>:</math>
 
\begin{equation*}
 
\begin{equation*}
||g(t,x)|| \leq ||g(t,x)||||x|| \leq A||x||^2 + B||x|| \leq \alpha||x||^2 + \beta.
+
||g(t,x)|| \leq A||x|| + B; \ A,B = \text{const} > 0.
 
\end{equation*}
 
\end{equation*}
''Замечание 4.'' Из условия сублинейного роста следует продолжимость в обе стороны, поскольку
+
''Замечание.'' Из условия сублинейного роста следует продолжимость в обе стороны, поскольку
 
\begin{equation}
 
\begin{equation}
 
\langle g(t,x),x\rangle \leq ||g(t,x)||||x|| \leq A||x||^2 + B||x|| \leq \alpha||x||^2 + \beta.
 
\langle g(t,x),x\rangle \leq ||g(t,x)||||x|| \leq A||x||^2 + B||x|| \leq \alpha||x||^2 + \beta.
 
\end{equation}  
 
\end{equation}  
Как показать, что такие <math>\alpha, \beta </math> существуют? Положим <math>\alpha = A + 1, </math> тогда дискриминант <math>||x||^2 - B||x|| + \beta \geq </math> будет отрицательный, то есть это будет верно для всех <math>\beta. </math><br>
+
Как показать, что такие <math>\alpha, \beta </math> существуют? Положим <math>\alpha = A + 1, </math> тогда дискриминант <math>||x||^2 - B||x|| + \beta \geq 0 </math> будет отрицательный, то есть это будет верно для всех <math>\beta > 0. </math><br>
'''Теорема 6.'''
+
'''Теорема 6.'''<br>
''Пусть выполнено условие (3). Тогда решение <math>x(\cdot)</math> задачи Коши (1) продолжимо вправо.'' <br>
+
''Пусть выполнено условие (5). Тогда решение <math>x(\cdot)</math> задачи Коши (\ref{syst}) продолжимо вправо.'' <br>
 
''Доказательство.''<br>
 
''Доказательство.''<br>
 
Предположим противное. Тогда в силу предыдущей теоремы, <math>||x(t)|| </math> не ограничена. Рассмотрим <math>z(t) = ||x(t)||^2 = \langle x(t),x(t) \rangle. </math>
 
Предположим противное. Тогда в силу предыдущей теоремы, <math>||x(t)|| </math> не ограничена. Рассмотрим <math>z(t) = ||x(t)||^2 = \langle x(t),x(t) \rangle. </math>
Строка 215: Строка 257:
 
\end{equation*}
 
\end{equation*}
 
Значит, <math>z(t) </math> ограничена, следовательно, <math>||x|| </math> ограничена, а значит, продолжимость вправо есть.<br>
 
Значит, <math>z(t) </math> ограничена, следовательно, <math>||x|| </math> ограничена, а значит, продолжимость вправо есть.<br>
Теорема доказана.<br>
+
Теорема доказана.<math>\blacksquare</math><br>
Наконец можем заменить условие 3) в условия Каратеодори условием сублинейного роста, положив <math>m(t) = Ar + B </math> (<math>r- </math> из условий теоремы существования решения).
+
Наконец можем заменить условие 3) в условия Каратеодори условием сублинейного роста, положив <math>m(t) = Ar + B </math> (<math>r\ -</math> из условий теоремы существования решения).
== Итоговые условия на <math>f(t,x,u) </math>
+
 
#<math>f(t,x,u) </math> определена на <math>\R \times \R^n \times \R^n </math> (или <math>[t_0, t_1]\times \R^n \times \R^n </math>);
+
== Итоговые условия на <math>f(t,x,u) </math> ==
#<math>f(t,x,u)</math> непрерывна по по <math>(t,x,u), \ u(\cdot)- </math> измерима;
+
#<math>f(t,x,u) </math> определена на <math>\R \times \R^n \times \R^m </math> (или <math>[t_0, t_1]\times \R^n \times \R^m </math>);
#<math>||f(t,x^{''},u) - f(t,x^{'},u)|| \leq L||x^{''} - x^{'}||,L = const</math>;
+
#<math>f(t,x,u)</math> непрерывна по по <math>(t,x,u), \ u(\cdot)\ - </math> измерима;
 +
#<math>||f(t,x'',u) - f(t,x',u)|| \leq L||x'' - x'||,L =\text{const}</math>;
 
#<math>||f(t,x,u)|| \leq A||x|| + B, \forall(t,x,u).</math>
 
#<math>||f(t,x,u)|| \leq A||x|| + B, \forall(t,x,u).</math>
 
Из них следуют соответствующие условия на <math>g(t,x):</math>
 
Из них следуют соответствующие условия на <math>g(t,x):</math>
 
#<math>g(t,x)</math> определена п.в. <math>t \in \R</math> для всех <math>\forall x</math> (п.в <math>t \in [t_0,t_1]</math> для всех <math>\forall x</math>);
 
#<math>g(t,x)</math> определена п.в. <math>t \in \R</math> для всех <math>\forall x</math> (п.в <math>t \in [t_0,t_1]</math> для всех <math>\forall x</math>);
#<math>g(t,x)-</math> измерима по <math>t</math> для всех <math>x</math>; <math>g(t,x)-</math> непрерывна по <math>x</math> для п.в. <math>\overset{.}{\forall}t \in \R(t \in [t_0, t_1]) </math>;
+
#<math>g(t,x) \ -</math> измерима по <math>t</math> для всех <math>x</math>; <math>g(t,x)-</math> непрерывна по <math>x</math> для п.в. <math>\overset{.}{\forall}t \in \R(t \in [t_0, t_1]) </math>;
#<math>||g(t,x^{''}) - g(t,x^{'})|| \leq L(t)||x^{''} - x^{'}||;</math>
+
#<math>||g(t,x'') - g(t,x')|| \leq L(t)||x'' - x'||;</math>
#Условие продолжимости вправо (влево):
+
#Условие продолжимости вправо (влево)<math>: \ \langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x, \alpha, \beta = \text{const} > 0 \ (-\langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta ). </math>
\begin{equation*}
+
 
\langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x, \alpha, \beta = const > 0
+
== Список литературы==
\end{equation*}
+
[1] Лекции по курсу "Оптимальное управление". Лектор: Комаров Юрий, 2020/2021.<br>
\begin{equation*}
+
[2] Богачёв, В.И., Смолянов О.Г. Действительный и функциональный анализ: университетский курс. — М.-Ижевск: НИЦ "Регулярная и хаотическая динамика", Институт компьютерных исследований, 2009. — С. 188. — 724 с. <br>
(-\langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta )
+
[3] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — изд. четвёртое, переработанное. — М.: Наука, 1976. — 544 с.
\end{equation*}
 

Текущая версия на 21:59, 12 декабря 2021

Рассматривается система дифферинциальных уравнений\[\dot x(t) = f(t, x(t), u(t)).\] Мы хотим понять, в каком смысле определять траекторию этой системы \(- \ x(\cdot)\), если управление \(- \ u(\cdot)\) измеримая функция.

Условия Каратеодори

Введем обозначение $$ g(t,x) = f(t, x, u(t)).$$ Пусть \((t_0, x^0) \in \mathbb{R} \times \mathbb{R}^n \) и \(\exists a > 0, r > 0\) такие, что:

  1. Пусть \(g(t,x)\) определена для \(\forall x \in B_r(x_0)\) и почти всех \( t \in [t_0-a,t_0+a];\)
  2. \(g(t,x)\) измерима по \(t\) для \(\forall x \in B_r(x^0)\), \(g(t,x)\) непрерывна по \(x\) для \(\dot \forall t \in [t_0-a, t_0+a];\)
  3. \(\exists m(\cdot) \) интегрируема по Лебегу при \(t \in [t_0-a, t_0+a]\) такая, что:

\begin{equation*} ||g(t,x)|| \leq m(t), \forall x \in B_r(x^{0}), \dot \forall t \in [t_0-a, t_0+a]. \end{equation*}

Эти три условия и называются условиями Каратеодори.

Абсолютно непрерывные функции

Мы бы хотели найти решение задачи Коши \begin{equation}\label{syst} \begin{cases} \dot x(t) = g(t, x(t)),\\ x(t_0) = x^0, \end{cases} \end{equation} в следующем классе функций:

  1. \( x(\cdot) \in C[t_0-a, t_0+a]; \)
  2. для почти всех \( \dot \forall t\) существует \( \exists \dot x \) и выполнено \( \dot x(t) = g(t, x(t))\).

Покажем, что условий Каратеодори самих по себе недостаточно для определения решения. Рассмотрим следующий пример \begin{equation*} \begin{cases} \dot x(t) = 0,\\ x(0) = 0. \end{cases} \end{equation*} Очевидно, что \(x \equiv 0\) является решением системы. Такое решение в рассматриваемом классе не единственно. Рассмотрим лестницу Кантора, она так же будет являться решением этой системы при наложенных ранее ограничениях.

Чтобы избежать неоднозначности из-за различных сингулярных частей в функции, наложим дополнительные ограничения на \( x \) :
$$ x(\cdot) $$ решение системы \(\Leftrightarrow \) для всех \(\forall t\) выполнено \begin{equation*} x(t) = x^0 + \int_{t_0}^{t} g(\tau, x(\tau)) \,d\tau. \\ \end{equation*}

Из курса функционального анализа [3] известно, что если \( z(\cdot) \) измерима, то для любого \( \varepsilon > 0\) существует \( \exists \delta(\varepsilon) > 0: \) \begin{equation*} \forall Z \text{ измеримого}: \mu (Z) \leq \delta \Rightarrow \int_{\tau \in Z} z(\tau) \,d\tau \leq \varepsilon,\\ \end{equation*} что обозначает абсолютную непрерывность интеграла Лебега.
Тогда можем заменить условие 3) в условиях Каратеодори на следующие два:
3') \( \dot x \) интегрируема по Лебегу;
4) Для всех \( \forall t \in [t_0-a, t_0+a] \Rightarrow x(t) = x^0 + \int_{t_0}^{t} \dot x(\tau) \,d\tau. \)

Введём следующие определения:

Определение 1. Функции, удовлетворяющие условиям 1), 2), 3'), 4) будем называть абсолютно непрерывными, а класс таких функций будем обозначать \( AC[t_0-a, t_0+a] \) (от англ. absolutely continuous). В курсе математического анализа, это определение вводится по-другому.

Определение 1'. Будем говорить, что \( x(\cdot) \in AC[\tau_0, \tau_1], \) если для любого \( \forall \varepsilon > 0 \) существует \( \exists \delta(\varepsilon) > 0: \)
\( \forall \tau_{1}^{'}, \) \( \dots, \tau_k^{'}, \tau_1^{''}, \dots, \tau_k^{''}\) таких, что \begin{equation*} \tau_0 \leq \tau_1^{'} < \tau_1^{''} \dots < \tau_k^{'} < \tau_k^{''} \leq \tau_1, \end{equation*} выполнено\[ \sum_{j=1}^{k}|\tau_j^{''}-\tau_j^{'}|<\delta \Rightarrow \sum_{j=1}^{k}||x(\tau_j^{''})-x(\tau_j^{'}) || \leq \varepsilon. \] Так же из курса математического анализа известна эквивалентность этих определений, подробнее можно узнать в [3].

Замечание. Абсолютно непрерывные функции являются непрерывными и равномерно непрерывными, но при этом не обязаны быть дифференцируемыми. В качестве контрпримера можно рассмотреть одномерную функцию $$f(x) = |x|.$$

Так же известно, что $$ \text{Lip}[\tau_0, \tau_1] \subset AC[\tau_0, \tau_1], $$ поскольку \begin{equation*} ||x(\tau'')-x(\tau') || \leq L |\tau''-\tau'| \Rightarrow \delta(\varepsilon) = \frac{\varepsilon}{L}. \end{equation*} Данное вложение является строгим, пример: $$x(t) = t^{\alpha}, 0 < \alpha < 1.$$
С учетом этих определений сформулируем новое определение.

Определение 2. Решением системы на $$t_0-a \leq \tau_0 < \tau_1 \leq t_0+a, t_0 \in [\tau_0, \tau_1]$$ по Каратеодори называется функция $$x(\cdot),$$ удовлетворяющая следующим критериям:

  1. \( x(\cdot) \in AC[\tau_0,\tau_1];\)
  2. \(x(t_0) = x^{0}; \)
  3. для почти всех \( \dot \forall t \in (\tau_0, \tau_1) \Rightarrow \dot x(t) = g(t,x(t)). \)

Замечание. Лестница Кантора не является абсолютно непрерывной. Так как мера точек роста функции равна нулю, то можно найти для любого \( \delta>0 \) можно покрыть это множество непересекающимися отрезками. Поэтому для \( \varepsilon = \frac{1}{2} \), будет нарушено определение, так как рост на отрезке [0,1] лестницы Кантора равен \(1 > \frac{1}{2} \).

Существование решения по Каратеодори

Для доказательства основной теоремы о существовании нам потребуется сформулировать несколько вспомогательных теорем.
Теорема 1(Scorza Dragoni G., 1948). Пусть \( g(t,x) \) измерима по $$t$$ для всех \( \forall x \in B_r(x^0)\) и непрерывна по \(x\) для почти всех \( \dot \forall t \in [\tau_0, \tau_1]. \) Тогда $$\forall \varepsilon$$ $$ \Rightarrow \exists K \subseteq [\tau_0, \tau_1], K $$ компакт, такой что \begin{equation*} \mu ([\tau_0, \tau_1] \setminus K) \leq \varepsilon \end{equation*} и \( g(t,x) \) суженная на \( K\times B_r(x^0) \) непрерывна по \((t,x) \)
Теорема 2(Критерий измеримости Лузина). Функция \( z(t) \) измерима на \( t \in [\tau_0, \tau_1] \Longleftrightarrow \forall \varepsilon > 0 \ \exists K \subseteq [\tau_0, \tau_1], K \) компакт такой, что \begin{equation*} \mu ([\tau_0, \tau_1] \setminus K) \leq \varepsilon \end{equation*} и \(z(t) \) суженная на \( K \) непрерывна.
Доказательство. Можно найти в [3].
Замечание 3. Из теоремы Лузина следует, что для \( g(t,x)\) существует \(K(x)\), а из теоремы 1 следует существование универсального \(K\)(на шаре).
Следствие 1.(Частный случай Scorza Dragoni) Если \( g(t,x) \) измерима по \(t\) для всех \(\forall x \), непрерывна по \( x \) для почти всех \(\dot \forall t\),а \(x(\cdot)\) измерима, то функция \(g(t,x(t)) \) измерима по \( t. \)
Доказательство. Функция \(u(\cdot) \) измерима, следовательно, из критерия Лузина \(\forall \varepsilon > 0 \exists K \subseteq [t_0-h, t_0+h], K \) компакт\[\mu([\tau_0,\tau_1] \setminus K) \leq \varepsilon \] и \( u \) при сужении на \( K \) непрерывна. Тогда \begin{equation*} z(\tau) = g(\tau, x^{(k)}(\tau)) = f(\tau, x^{(k)}(\tau),u(\tau)) \end{equation*} непрерывна на \(K\), а значит, \( z(\cdot) \) измерима.\(\blacksquare\)
Теперь можно сформулировать теорему о существовании решения.
Теорема 3(Существование решения исходной системы). Пусть \( 0 < h \leq a \) и \begin{equation*} \int_{t_0}^{t_0+h}m(\tau)d\tau \leq r, \int_{t_0-h}^{t_0}m(\tau)d\tau \leq r. \end{equation*} Тогда существует \( \exists x(\cdot) \in AC[t_0-h, t_0+h] \) решение по Каратеодори исходной системы ДУ в смысле Каратеодори.
Доказательство. Выпишем следующую последовательность функций: \begin{equation*} x^{(0)}(t) \equiv x^{0}, \end{equation*} \begin{equation*} x^{(k+1)}(t) = x^{0}+\int_{t_0}^{t}g(\tau,x^{(k)}(k))d\tau. \end{equation*} Элементы этой последовательности определены корректно, поскольку \( g(\tau, x^{(k)}(\tau)) \) измеримы по \( \tau \) в силу следствия 1, ограничены интегрируемой функцией \( m(t) \) (по условию теоремы) и, следовательно, интегрируем по Лебегу. При этом \( x^{(k)}(\cdot) \in C \Rightarrow x^{(k)}(\cdot) \in AC \). Для того, чтобы воспользоваться теоремой Арцела-Асколи, нам необходимо показать равностепенную непрерывность и равномерную ограниченность последовательности.

Равномерная ограниченность (при $$t \geq t_0,$$ для $$t \leq t_0$$) аналогично)\[ ||x^{(k+1)}(t)-x^{0}|| \leq \int_{t_0}^{t}||g(\tau,x^{(k)}(\tau))||d\tau \leq \int_{t_0}^{t}m(\tau) d\tau \leq r.\] Покажем равностепенную непрерывность\[ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0: \ \forall t', t'' \in [t_0-h,t_0+h], \ t'\leq t'': |t'-t''|\leq \delta\] \begin{equation*} \forall n \in \mathbb{N} \Rightarrow ||x^{(n)}(t'')-x^{(n)}(t')||\leq \varepsilon? \end{equation*} Для нашей последовательности \begin{equation*} ||x^{(n)}(t'')-x^{(n)}(t')||= || \int_{t'}^{t''}g(s, x^{(n-1)}(s))ds||\leq \int_{t'}^{t''}m(s)ds \leq \varepsilon \end{equation*} в силу абсолютной непрерывности интеграла Лебега. Тогда последовательность непрерывных функций \( x^{(k)}(\cdot) \) равностепенно непрерывно и равномерно ограничено и, в силу теоремы Арцела-Асколи, \( x^{(k)} \rightrightarrows x(\cdot). \) При этом \begin{equation*} || x^{(k)}(\cdot)-x(\cdot)||_C = \max_{t\in [t_0-h,t_0+h]}|| x^{(k)}(t)-x(t)||, \end{equation*} то есть сходимость в С аналогична равномерной сходимости, и \( x(\cdot) \in C[t_0-h, t_0+h].\) Наконец, переходим к пределу в итеративной последовательности\[ x(t) = x^{0} + \int_{t_0}^{t}g(s,x(s))ds, x(\cdot) \in AC[t_0-h, t_0+h].\] Теорема доказана.\(\blacksquare\)

Единственность решения

Для единственности решения мы обычно требуем липшицевость по \( x \text{:} \)\[ || g(t,x'' - g(t,x'))|| \leq L(t)||x'' - x'|| \] Где \(L(t) -\) интегрируема по Лебегу.
Ослабив это условие, добавим его к списку условий Каратеодори 1)-3):
\( 4) \ \ \forall x', x'' \ \ \exists L(t) - \) интегрируема по Лебегу\[ \langle g(t,x'') - g(t,x'), x'' - x' \rangle \leq L(t)||x'' - x' ||.\] Нетрудно показать что всякая липшицевая по \(x\) функция удовлетворяет этому условию в силу неравенства Коши-Буняковсвого-Шварца.
Теорема 4 (Теорема о единственности решения по Каратеодори).
Пусть выполнены условия Каратеодори 1),2),3) а так же 4). Тогда решение по Каратеодори задачи Коши единственно.
Доказательтво:
Предположим противное. Пусть \(x'(t)\) и \(x''(t) - \) два различных решения задачи Коши на \([t_{0}, t_{0} + h]\). Рассмотрим вспомогательную функцию\[z(t) = ||x''(t) - x'(t)||^{2} = \langle x''(t) - x'(t),x''(t) - x'(t) \rangle.\] Она дифференцируема почти всюду, и для п.в. \(t\)\[ \frac{dz}{dt} = 2 \langle g(t,x''),g(t,x'),x''(t) - x'(t) \rangle \leq 2L(t)z(t).\] При этом \(z(t_{0}) = 0 \ \ \)(из определения \( z\)). Тогда неравенство\[ \frac{dz}{dt} - 2L(t)z(t) \leq 0\] домножим на \( \exp \{\int_{t_{0}}^{t} L(\xi)d\xi \}:\)\[ \frac{d}{dt}(z(t)e^{-2\int_{t_{0}}^{t}L(\xi)d\xi}) \leq 0 \] для п.в. \(t\) (верно там, где она дифференцируема). Проинтегрировав получаем\[ 0 \leq z(t) e^{-2\int_{t_{0}}^{t}L(\xi)d\xi} \leq 0. \] Левое неравенство достигается в силу определения \(z\), а правое следует из того факта, что производная отрицательная, а значит \(z(t_{0}) = 0.\) Тогда в обоих случаях достигаются равенства, и функции совпадают.
Теорема доказана. \(\blacksquare\)

Продолжимость решения

В случае с решением по Каратеодори также возникает вопрос продожимости решения вправо. В условиях Каратеодори есть ограниченность интегрируемой функции, в теореме о существовании решении мы ограничили интеграл от этой функции \(m(\cdot)\) значением \(r\). Разве этого не достаточно? Оказывается, нет.
Мы рассматриваем систему на отрезке времени \( [t_{0} - a, t_{0} + a]. \) Зафиксируем \(h_{1} < a\) и проинтегрируем исходную систему на \( [t_{0}, t_{0} + h_{1}]. \) При этом \(||x(t_{0}) - x^{0}| < r_{1}.\) Переобозначим полученное значение в точке \( \xi_1 = x(t_{0} + h_{1}) \) и запишем новую задачу Коши\[ \begin{cases} \dot{x}(t) = g(t,x(t)),\\ x(t_{0} + h_{1}) = \xi^{1} \end{cases} \] Таким образом, мы продвинулись на \(h_{1}\) вправо по времени.
Далее аналогичным образом выберем \(h_{2},h_{3} \) и т.д. Для каждой получившейся задачи Коши мы можем взять новую \( m(\cdot) \) и варьировать соответствующее ей значение \(r\), устремляя таким образом \(h \rightarrow a\) и \( h \rightarrow +\infty\). При этом \(r\) не будет ограничено, если \( h_{1} + h_{2} + \ldots < a. \)
Пример 1. \begin{equation*} \begin{cases} \dot{x}(t) = (x(t))^{2}\\ x(t) = 1 \end{cases} \end{equation*} Проинтегрировав систему: \begin{equation*} \int \frac{dx}{x^{2}} = \int dt \end{equation*} получим решение \( x(t) = \frac{1}{1 - t} \), неограниченно растущее в окрестности \(t = 1\).
Покажем, что непродолжимость решения может возникать только в случае неограниченного роста функции. Введем обозначения: \begin{equation} \overline{\tau} = \sup \{ \tau \in (t_{0}, t_{0} + a): \exists x(\cdot) - \text{ при } t \in [t_{0}, \tau]\}, \end{equation} \begin{equation} \underline{\tau}= \inf \{ \tau \in (t_{0} - a, t_{0}): \exists x(\cdot) - \text{ при } t \in [\tau,t_{0}]\}. \end{equation} Где \(x(\cdot)\) решение задачи Коши (\ref{syst}). Введенные обозначения корректны, поскольку множества непусты в силу существования решения и его ограниченности на отрезке (функции непрерывны).
Теорема 5.
Пусть \(\overline{\tau} < t_0 + a \ (\underline{\tau} > t_0 - a). \) Тогда для \(\forall r > 0 \ \exists \tau \in (t_0, \overline{\tau}) (\tau \in (\underline{\tau}, t_0)) \) такое, что \( ||x(\tau) - x^0|| = r.\)
Доказательство.
Предположим противное. Пусть \(\exists \overline{r} > 0: \forall \tau \in (t_0, \overline{\tau}) \Rightarrow ||x(\tau) - x^0|| < \overline{r}. \)
Пусть \(\Delta > 0, r = \overline{r} + \Delta,\) тогда \(\forall t \in [t_0, \overline{\tau}) \) верно \begin{equation*} B_\Delta (x(t)) \subseteq B_r(x^0). \end{equation*} Возьмем \(\delta = t_0 + a - \overline{\tau} > 0. \) Тогда \(\overline{\tau} + \delta < t_0 + a. \)
Для любого \(\forall \tau \in [t_0, \overline{\tau}) \Rightarrow [\tau - \delta, \tau + \delta]\times B_\Delta(x(\tau)) \subseteq [t_0 - a, t_0 + a]\times B_r(x^0). \)
Существует \(\exists h > 0, h < \delta: \int_{\tau}^{\tau+h}m(s)ds \leq \Delta. \) При этом получается, что \(h \ -\) не зависит от \(\tau\) (в силу абсолютной непрерывности интеграла Лебега). То есть мы нашли универсальный шаг, на который можем продвигаться при построении решения\(:\) \(h \ - \) универсально для всех \(\tau \in [t_0, \overline{\tau}),\) то есть мы можем проинтегрировать \(x(\cdot) \) до момента \(\tau + h \) для любого \(\tau. \) По определению \(\overline{\tau} \ - \) это супремум всех моментов времени, когда существует решение. Из определения супремума \(: \exists \tau: \overline{\tau} - \tau < h/2. \) Для этого \(\tau \) проинтегрируем систему до \(\tau + h. \) Но тогда получается, что \(\tau + h > \overline{\tau}, \) что приводит нас к противоречию.
Теорема доказана.\(\blacksquare\)
Отбросим теперь в условиях Каратеодори условие с \(a\) и заменим отрезок времени на \([t_0,t_1] \) либо \(\R \) (в 1) и 2)) и добавим условие продолжимости вправо(влево). \begin{equation} \langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x;\alpha,\beta = \text{const} >0 \end{equation} \begin{equation*} (-\langle g(t,x),x \rangle \leq \alpha||x||^2 + \beta). \end{equation*} Условие продолжимости в обе стороны (условие сублинейного роста)\(:\) \begin{equation*} ||g(t,x)|| \leq A||x|| + B; \ A,B = \text{const} > 0. \end{equation*} Замечание. Из условия сублинейного роста следует продолжимость в обе стороны, поскольку \begin{equation} \langle g(t,x),x\rangle \leq ||g(t,x)||||x|| \leq A||x||^2 + B||x|| \leq \alpha||x||^2 + \beta. \end{equation} Как показать, что такие \(\alpha, \beta \) существуют? Положим \(\alpha = A + 1, \) тогда дискриминант \(||x||^2 - B||x|| + \beta \geq 0 \) будет отрицательный, то есть это будет верно для всех \(\beta > 0. \)
Теорема 6.
Пусть выполнено условие (5). Тогда решение \(x(\cdot)\) задачи Коши (\ref{syst}) продолжимо вправо.
Доказательство.
Предположим противное. Тогда в силу предыдущей теоремы, \(||x(t)|| \) не ограничена. Рассмотрим \(z(t) = ||x(t)||^2 = \langle x(t),x(t) \rangle. \) \begin{equation*} \frac{dz}{dt} = 2\langle g(t,x(t)),x(t) \rangle \leq 2\alpha z(t) + 2\beta, \end{equation*} \begin{equation*} \frac{dz}{dt} - 2\alpha z \leq 2\beta. \end{equation*} Домножим на \(exp\{-2\alpha t \}: \) \begin{equation*} \frac{d}{dt}(z(t)e^{-2\alpha t}) \leq \beta e^{-2\alpha} \Rightarrow z(t)e^{-2\alpha t} - z(t_0)e^{-2\alpha t_0} \leq \int_{t_0}^{t}2\beta e^{-2\alpha s}ds \Rightarrow 0 \leq z(t) \leq z(t_0)e^{-2\alpha t_0} + \int_{t_0}^{t}2\beta e^{-2\alpha s}ds. \end{equation*} Значит, \(z(t) \) ограничена, следовательно, \(||x|| \) ограничена, а значит, продолжимость вправо есть.
Теорема доказана.\(\blacksquare\)
Наконец можем заменить условие 3) в условия Каратеодори условием сублинейного роста, положив \(m(t) = Ar + B \) (\(r\ -\) из условий теоремы существования решения).

Итоговые условия на \(f(t,x,u) \)

  1. \(f(t,x,u) \) определена на \(\R \times \R^n \times \R^m \) (или \([t_0, t_1]\times \R^n \times \R^m \));
  2. \(f(t,x,u)\) непрерывна по по \((t,x,u), \ u(\cdot)\ - \) измерима;
  3. \(||f(t,x'',u) - f(t,x',u)|| \leq L||x'' - x'||,L =\text{const}\);
  4. \(||f(t,x,u)|| \leq A||x|| + B, \forall(t,x,u).\)

Из них следуют соответствующие условия на \(g(t,x):\)

  1. \(g(t,x)\) определена п.в. \(t \in \R\) для всех \(\forall x\) (п.в \(t \in [t_0,t_1]\) для всех \(\forall x\));
  2. \(g(t,x) \ -\) измерима по \(t\) для всех \(x\); \(g(t,x)-\) непрерывна по \(x\) для п.в. \(\overset{.}{\forall}t \in \R(t \in [t_0, t_1]) \);
  3. \(||g(t,x'') - g(t,x')|| \leq L(t)||x'' - x'||;\)
  4. Условие продолжимости вправо (влево)\(: \ \langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x, \alpha, \beta = \text{const} > 0 \ (-\langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta ). \)

Список литературы

[1] Лекции по курсу "Оптимальное управление". Лектор: Комаров Юрий, 2020/2021.
[2] Богачёв, В.И., Смолянов О.Г. Действительный и функциональный анализ: университетский курс. — М.-Ижевск: НИЦ "Регулярная и хаотическая динамика", Институт компьютерных исследований, 2009. — С. 188. — 724 с.
[3] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — изд. четвёртое, переработанное. — М.: Наука, 1976. — 544 с.