Условия непрерывности функции максимума: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 1: Строка 1:
 
Для того, чтобы исследовать условия непрерывности функции максимума, то есть, максимальной функции Гамильтона при зафиксированном управлении, нужно использовать многозначный анализ. Введем некоторые необходимые понятия.
 
Для того, чтобы исследовать условия непрерывности функции максимума, то есть, максимальной функции Гамильтона при зафиксированном управлении, нужно использовать многозначный анализ. Введем некоторые необходимые понятия.
  
\(\mathcal{Z} \in \mathbb{R}^n\) - непустой компакт в \(\mathbb{R}^n\)
+
\(\mathcal{A} \in comp \mathbb{R}^n\) - непустой компакт в \(\mathbb{R}^n\)
  
 
== Лемма о непрерывности функции максимума ==
 
== Лемма о непрерывности функции максимума ==

Версия 20:23, 18 декабря 2021

Для того, чтобы исследовать условия непрерывности функции максимума, то есть, максимальной функции Гамильтона при зафиксированном управлении, нужно использовать многозначный анализ. Введем некоторые необходимые понятия.

\(\mathcal{A} \in comp \mathbb{R}^n\) - непустой компакт в \(\mathbb{R}^n\)

Лемма о непрерывности функции максимума

Пусть

1) \(z: V \Rightarrow\) comp \(\mathbb{R}^l, V \subseteq \mathbb{R}^k, z\) непрерывна и равномерно ограничена на \(V\). То есть, \(V \in\) comp \(\mathbb{R}^k\).

2) \(g: V \times \mathbb{R}^l \Rightarrow \mathbb{R}, g\) непрерывна по \((v,z) \in V \times \mathbb{R}^l\).

Тогда \(H(v) = \underset{z \in \mathcal{Z} (v)}{max} \{g(v,z)\}\) - непрерывна на \(V\).

Доказательство леммы

\(\mathcal{Z}(v) \in \mathcal{B}_R(0) \).

\(g|_{V \times \mathcal{B}_R(0)}\) непрерывна, следовательно, по теореме Кантора, \(\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0\) такие, что \( \forall v', v'' \in V, ||v' - v''||< \delta, \forall z', z'' \in \mathcal{B}_{R(0)}, ||z'-z''|| < \delta\) верно: \(|g(v',z')-g(v'',z'')| < \varepsilon \).

Исследуем непрерывность \(H(v)\) при \(v = v^0 \in V\).

\(\mathcal{Z}\) непрерывна на V, следовательно, для данного \(\delta\) существует \(\tilde\delta(\delta(\varepsilon)) > 0\) такая, что \(\forall v \in V_{\tilde\delta}(v^0) \cap V, h(\mathcal{Z}(v), \mathcal{Z}(v^0)) < \delta\). Это верно тогда и только тогда, когда \[ \begin{cases} \mathcal{Z}(v) \subseteq \mathcal{Z}(v^0) + \delta\mathcal{B}_1(0),\\ \mathcal{Z}(v^0) \subseteq \mathcal{Z}(v) + \delta\mathcal{B}_1(0). \end{cases} \]

Выберем любое \(v\), такое, что \(||v - v^0|| < \delta\), и проверим, следует ли из этого \(|H(v)-H(v^0)| < \varepsilon\).

Пусть \(z^{0*} \in Argmax \{g(v^0,z^0) | z^0 \in \mathcal{Z}(v^0)\}, z^{*} \in\) Argmax \(\{g(v,z) | z \in \mathcal{Z}(v)\}, \) \[ \begin{cases} z^{*} \in \mathcal{Z}(v) \subseteq \mathcal{Z}(v^0) + \delta\mathcal{B}_1(0),\\ z^{0*} \in \mathcal{Z}(v^0) \subseteq \mathcal{Z}(v) + \delta\mathcal{B}_1(0). \end{cases} \]

Из этого следует, что: \[ \begin{cases} \exists z' \in \mathcal{Z}(v^0): ||z^* - z'|| < \delta,\\ \exists z'' \in \mathcal{Z}(v): ||z^{*0} - z'|| < \delta. \end{cases} \]

Тогда: \begin{equation} H(v) - H(v^0) = \underset{z \in \mathcal{Z} (v)}{max}g(v,z) - \underset{z^0 \in \mathcal{Z} (v^0)}{max}g(v^0,z^0) \leqslant g(v,z^*) - g(v^0, z') < \varepsilon. \end{equation}

При этом, \begin{equation} H(v^0) - H(v) \leqslant g(v^0,z^{0*}) - g(v, z'') < \varepsilon. \end{equation}

Следовательно, \(H\) непрерывна. Лемма доказана.