Неподвижные точки системы: различия между версиями
Kirich23 (обсуждение | вклад) |
Kirich23 (обсуждение | вклад) |
||
Строка 51: | Строка 51: | ||
\] | \] | ||
где $$f^{k}$$ обозначает $$k$$-ую суперпозицию отображения $$f$$. Таким образом мы доказали,что последовательность $$f^{k}(N)$$ будет сходиться к $$N^{*}$$, то есть является асимптотически устойчивой. | где $$f^{k}$$ обозначает $$k$$-ую суперпозицию отображения $$f$$. Таким образом мы доказали,что последовательность $$f^{k}(N)$$ будет сходиться к $$N^{*}$$, то есть является асимптотически устойчивой. | ||
+ | |||
Вторая часть утверждения доказывается сходным образом. | Вторая часть утверждения доказывается сходным образом. |
Версия 01:37, 14 декабря 2023
Неподвижные точки системы
Пусть задана динамическая система с дискретным временем
\begin{equation} \label{sist1} N_{t+1}=f(N_{t}), N_{t}\in\mathbb{R}, f:\mathbb{R} \rightarrow \mathbb{R} \end{equation}
Определение 1. Решения задачи (\ref{sist1}), не изменяющиеся с течением времени $$t$$ называются неподвижными точками отображения (\ref{sist1}). Неподвижные точки определяются как решение уравнения $$N=f(N)$$.
Заметим, что нередко функцию $$f(N)$$ представляют в виде $$f(N)=NF(N)$$, чтобы подчеркнуть существование тривиальной неподвижной точки $$N^{*}=0$$. В этом случае остальные неподвижные точки — решения уравнения $$F(N)$$.
Графически неподвижные точки — это точки пересечения графика функции $$f(N)$$ и биссектрисы первого координатного угла $$N_{t+1} = N_{t}$$ (напомним, что нас интересуют только неотрицательные решения).
Устойчивость неподвижных точек
Неподвижная точка $$N^{*}$$ отображения (\ref{sist1}) называется устойчивой по Ляпунову, если для любого $$\varepsilon > 0$$ существует такое $$\delta > 0$$, что для любых начальных данных $$N_{0}$$ из $$\delta$$-окрестности точки $$N^{*}$$ вся траектория системы $$N_{t}$$, $$t = 0, 1, 2, ...$$ содержится в $$\varepsilon$$-окрестности точки $$N^{*}$$.
Если, кроме того, $$\displaystyle{\lim_{t\to\infty}} N_{t} = N^{*}$$, то точка $$N^{*}$$ называется асимптотически устойчивой.
Асимптотически устойчивые неподвижные точки иногда называют аттракторами, а неустойчивые неподвижные точки иногда называют репеллерами.
Теорема 1. Пусть $$N^{*}$$ — неподвижная точка отображения (\ref{sist1}), т.е. $$N^{*}$$ =f($$N^{*}$$), и пусть f обратима в малой окрестности $$N^{*}$$. Тогда $$N^{*}$$ асимптотически устойчива, если $$ |f^{'}(N^{*})| < 1$$, и неустойчива, если $$ |f^{'}(N^{*})| > 1$$. Если $$ |f^{'}(N^{*})| = 1$$, то требуются дополнительные исследования.
Доказательство. Пусть $$|f^{'}(N^{*})| < 1$$ и пусть $$N$$ принадлежит малой окрестности $$N^{*}$$. Так как \[ \displaystyle{\lim_{t\to\infty}} \frac{|f(N)-f(N^{*})|}{|N-N^{*}|}=|f^{'}(N^{*})|, \] поэтому существует такая окрестность $$N^{*}$$, что \[ \frac{|f(N)-f(N^{*})|}{|N-N^{*}|} \leqslant a, \] для всех u из этой окрестности; здесь $$a$$ — некоторое число, такое что $$|f^{'}(N^{*})| \leqslant a < 1$$. Таким образом, $$f(N)$$ остается в той же окрестности, что и $$N$$, и, кроме того, ближе к неподвижной точке $$N^{*}$$, по крайней мере, на множитель $$a$$. Отсюда следует, что \[|f(f(N)) − f(f(N^{*}))| \leqslant a |f(N) − f(N^{*})| \leqslant a^2|N − N^{*}|, \] или, по индукции, \[|f^{k}(N) − N^{*}| \leqslant a^{k}|N − N^{*}|, \] где $$f^{k}$$ обозначает $$k$$-ую суперпозицию отображения $$f$$. Таким образом мы доказали,что последовательность $$f^{k}(N)$$ будет сходиться к $$N^{*}$$, то есть является асимптотически устойчивой.
Вторая часть утверждения доказывается сходным образом.