Неподвижные точки системы: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 47: Строка 47:
  
 
Если положение равновесия не является '''устойчивым''', то говорят, что оно '''неустойчиво'''.
 
Если положение равновесия не является '''устойчивым''', то говорят, что оно '''неустойчиво'''.
 
 
'''Асимптотически устойчивые неподвижные точки''' иногда называют
 
'''Асимптотически устойчивые неподвижные точки''' иногда называют
 
[https://ru.wikipedia.org/wiki/%D0%90%D1%82%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%BE%D1%80 аттракторами],
 
[https://ru.wikipedia.org/wiki/%D0%90%D1%82%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%BE%D1%80 аттракторами],

Версия 03:08, 17 декабря 2023

Пусть задана динамическая система:


\begin{equation} \label{sist1} u \mapsto f(u) = f(u;r), ~u \in \mathcal{U} \subset X, ~r \in \mathcal{R}, ~f:\mathcal{U} \rightarrow \mathcal{U}, \end{equation} где множество $$X \subset \mathcal{R}^n$$.

Определение 1.

Неподвижными точками динамической системы (\ref{sist1}) называются такие точки пространства состояний $$u^{∗}$$, что $$f(u^{∗}) = u^{∗}$$.

Определение 2.

Пространством состояний (или фазовым пространством) называется множество всевозможных состояний $$u_t$$.

Кроме термина "неподвижная точка" используют иногда термины "стационарная точка" или "положение равновесия".

Устойчивость неподвижных точек

$$r=30, b=3$$, система имеет два различных неотрицательных корня.
$$r=0.9, b=7$$, система имеет единственный корень $$v=0$$.

Известно, что никакая реальная система не может находиться все время в одном и том же состоянии, так как помимо всего прочего подвержена внешним воздействиям. Что произойдет, если немного возмутить состояние системы так, что ее состояние окажется в некоторой окрестности положения равновесия? Траектории могут покинуть эту окрестность, остаться в этой окрестности, или приблизиться к положению равновесия. Естественно назвать положение равновесия неустойчивым в первом случае и устойчивым в двух других. Чтобы формализовать обсуждаемое понятие устойчивости, введем следующее определение.

Определение 3.

Неподвижная точка $$u^{*}$$ отображения (\ref{sist1}) называется устойчивой по Ляпунову, если для любого $$\varepsilon > 0$$ существует такое $$\delta > 0$$, что для любых начальных данных $$u_{0}$$ из $$\delta$$-окрестности точки $$u^{*}$$ вся траектория системы $$u_{t}$$, $$t = 0, 1, 2, ...$$ содержится в $$\varepsilon$$-окрестности точки $$u^{*}$$.

Если, кроме того, $$\displaystyle{\lim_{t\to\infty}} u_{t} = u^{*}$$, то точка $$u^{*}$$ называется асимптотически устойчивой.

То есть $$u^{*}=f(u^{*})$$ устойчивая по Ляпунову, если $$\forall \varepsilon > 0 ~ \exists \delta(\varepsilon) ~ \forall u_0 \in \mathcal{U}_{\delta}(u^{*})$$ верно $$|u^{*}-u_{t}|< \varepsilon, ~\forall t \geqslant 0$$.

Если, кроме того, $$|u(t; u_0) − u^{*}| \rightarrow 0$$, при $$t \rightarrow \infty$$, то положение равновесия $$u^{*}$$ называется асимптотически устойчивым.

Если положение равновесия не является устойчивым, то говорят, что оно неустойчиво. Асимптотически устойчивые неподвижные точки иногда называют аттракторами, а неустойчивые неподвижные точки иногда называют репеллерами.

Теорема 1.

Пусть $$u^{*}$$ — неподвижная точка отображения (\ref{sist1}), т.е. $$u^{*}$$ = $$f(u^{*})$$, и пусть $$f$$ обратима в малой окрестности $$u^{*}$$. Тогда $$u^{*}$$ асимптотически устойчива, если $$|f^{'}(u^{*})| < 1$$, и неустойчива, если $$|f^{'}(u^{*})| > 1$$. Если $$ |f^{'}(u^{*})| = 1$$, то требуются дополнительные исследования.

Доказательство.

Пусть $$|f^{'}(u^{*})| < 1$$ и пусть $$u$$ принадлежит малой окрестности $$u^{*}$$. Так как \[ \displaystyle{\lim_{t\to\infty}} \frac{|f(u)-f(u^{*})|}{|u-u^{*}|}=|f^{'}(u^{*})|, \] поэтому существует такая окрестность $$u^{*}$$, что \[ \frac{|f(u)-f(u^{*})|}{|u-u^{*}|} \leqslant a, \] для всех $$u$$ из этой окрестности; здесь $$a$$ — некоторое число, такое что $$|f^{'}(u^{*})| \leqslant a < 1$$. Таким образом, $$f(u)$$ остается в той же окрестности, что и $$u$$, и, кроме того, ближе к неподвижной точке $$u^{*}$$, по крайней мере, на множитель $$a$$. Отсюда следует, что \[|f(f(u)) − f(f(u^{*}))| \leqslant a |f(u) − f(u^{*})| \leqslant a^2|u − u^{*}|, \] или, по индукции, \[|f^{k}(u) − u^{*}| \leqslant a^{k}|u − u^{*}|, \] где $$f^{k}$$ обозначает $$k$$-ую суперпозицию отображения $$f$$. Таким образом мы доказали, что последовательность $$f^{k}(u)$$ будет сходиться к $$u^{*}$$, то есть является асимптотически устойчивой.

Вторая часть утверждения доказывается сходным образом. $$\blacksquare$$

Пример поиска неподвижных точек с помощью графического метода

Аттрактор в точке $$v_2^*$$ при параметрах $$r=10, b=2, v_0=1.$$
Аттрактор в точке $$v_2^*$$ при параметрах $$r=3, b=0.9, v_0=4.5$$.

Пусть задана система $$v_{t+1} = \frac{r v_t}{(1+ v_t)^b}$$.

Графически неподвижные точки — это точки пересечения графика функции $$f(N)$$ и биссектрисы первого координатного угла $$N_{t+1} = N_{t}$$ (нас интересуют только неотрицательные решения). Для нахождения неподвижных точек заданной системы рассмотрим возможные пересечения графика функции $$f(v)=\frac{rv}{(1+v)^b}$$ с прямой $$g(v)=v$$.

Заметим, что система \begin{equation} \label{sist2} \begin{cases} f(v)=\frac{rv}{(1+v)^b},\\g(v)=v. \end{cases} \end{equation} при любых $$v \geqslant 0, ~r,b > 0$$ имеет хотя бы один корень, а именно $$v=0$$. Второй корень $$v=r^{1/b}-1$$ система может иметь только при значении параметра $$r> 1$$. Больше двух неотрицательных корней система (\ref{sist2}) не имеет.


Аттрактор в точке $$v_1^*$$ при параметрах $$r=0.9, b=0.7, v_0=4.$$
Репеллер в точке $$v_1^*$$ при параметрах $$r=2, b=0.9, v_0=2.$$

Пример исследования неподвижных точек на устойчивость

Исследуем на устойчивость неподвижные точки $$v^{*}_1=0$$ и $$v^{*}_2=r^{1/b}-1$$ для системы (\ref{sist2}).

\begin{equation} f_v(v^{*})=\frac{r((1+v)^b-bv(1+v)^{b-1})}{(1+v)^{2b}}. \end{equation}

Исследуем сначала точку $$v^{*}_2=r^{1/b}-1$$:

Подставим $$v_2^{*}$$ в выражение (\ref{sist2}) и с учетом наложенных ограничений $$r>1, b>0$$ для существования точки получим

\[ f_v(v_2^{*})=b(r^{-1/b}-1)+1. \]

Согласно теореме 1 точка $$v^{*}_2=r^{1/b}-1$$ будет асимптотически устойчивой, при $$r^{-1/b}<1$$ и неустойчивой при $$r^{-1/b}>1$$. Отметим, что точка $$v^{*}_2=r^{1/b}-1$$ (отличная от нуля) существует только при значении параметра $$r > 1$$, таким образом $$r^{-1/b}$$ принимает значения меньше единицы при любых $$r> 1$$, значит, точка $$v^{*}_2$$ асимптотически устойчива всегда, если она существует.

Теперь исследуем на устойчивость точку $$v^{*}_1=0$$:

Подставим $$v_1^{*}$$ в выражение (\ref{sist2}) и получим \[ f_v(v_1^{*})=r. \] Таким образом, по теореме 1, точка $$v^{*}_1=0$$ будет асимптотически устойчивой, при $$r<1$$ и неустойчивой при $$r>1$$.


Связанные теоремы

Теорема 2. (Банах)

Пусть $$(X, d)$$ — полное метрическое пространство с метрикой $$d$$.

Пусть задано отображение $$f : X \rightarrow X$$ и существует число $$a, 0 \leqslant a < 1$$, такое, что для любых $$x, y \in X: d(f(x), f(y)) \leqslant a \cdot d(x, y)$$.

Тогда существует единственная точка $$\xi \in X$$ такая, что $$f(\xi) = \xi$$, и начиная с любой точки $$x_0 \in X$$, последовательность итераций $${f_n(x_0)}_{n=1,2,...}$$ сходится к точке $$\xi$$.

Теорема 3. (Брауэр)

Любое непрерывное отображение замкнутого шара в себя в конечномерном евклидовом пространстве имеет неподвижную точку.

Более подробно, рассмотрим замкнутый шар в n-мерном пространстве \(B^n\subset \mathbb R^n\). Пусть \(f \colon B^n\to B^n\) — некоторое непрерывное отображение этого шара в себя (не обязательно строго внутрь себя, не обязательно биективное, т.е. даже не обязательно сюръективное). Тогда найдется такая точка \(x\in B^n\), что \(f(x)=x\).

Теорема 4. (Шаудер — Тихонов)

В локально выпуклом топологическом векторном пространстве любое непрерывное отображение $$f : K\to K$$ выпуклого компактного множества $$K$$ в себя имеет неподвижную точку.

Список литературы

1. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии, 2011.

2. Абрамова В.В. Лекции по курсу "Динамические системы и биоматематика", 2023.

3. Banach S. Sur les opérations dans les ensembles abstraits et leur applications aux équations integrales, Fund. Math, 1922

4. Шашкин Ю.А. Неподвижные точки, М.: Наука, 1989

5. J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2, 1930