Классификация особых точек в двумерном пространстве: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
(Новая страница: «Рассмотрим линейную систему с постоянными вещественными коэффициентами относительно в...»)
 
Строка 6: Строка 6:
 
       a_{21} & a_{22}\\
 
       a_{21} & a_{22}\\
 
   \end{array}\right) .
 
   \end{array}\right) .
 +
\end{equation}
 +
Нас будут интересовать фазовые $$($$то есть в плоскости $$(y_1,y_2))$$ траектории системы (\ref{sist1}). Заметим, что фазовые траектории этой системы являются интегральными кривыми обыкновенного дифференциального уравнения , полученного после исключения переменной $$t$$ из (\ref{sist1})
 +
\begin{equation} \label{sist2}
 +
\dfrac{dy_1}{dy_2} = \dfrac{a_{11}y_1+a_{12}y_2}{a_{21}y_1+a_{22}y_2} .
 
\end{equation}
 
\end{equation}

Версия 11:03, 28 декабря 2023

Рассмотрим линейную систему с постоянными вещественными коэффициентами относительно вектор-функции $$\overline{y}(t) = (y_1(t), y_2(t))^T$$ \begin{equation} \label{sist1} \dfrac{d\overline{y}}{dt} = A\overline{y}, \ \ A = \left(\ \begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22}\\ \end{array}\right) . \end{equation} Нас будут интересовать фазовые $$($$то есть в плоскости $$(y_1,y_2))$$ траектории системы (\ref{sist1}). Заметим, что фазовые траектории этой системы являются интегральными кривыми обыкновенного дифференциального уравнения , полученного после исключения переменной $$t$$ из (\ref{sist1}) \begin{equation} \label{sist2} \dfrac{dy_1}{dy_2} = \dfrac{a_{11}y_1+a_{12}y_2}{a_{21}y_1+a_{22}y_2} . \end{equation}