Модель Рамсея и задачи оптимального управления для неё: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 7: Строка 7:
 
* $$ u( \cdot ) $$ — функция полезности,
 
* $$ u( \cdot ) $$ — функция полезности,
 
* $$ \rho > 0 $$ — норма субъективных межвременных предпочтений, субъективно выбранный положительный параметр дисконтирования,
 
* $$ \rho > 0 $$ — норма субъективных межвременных предпочтений, субъективно выбранный положительный параметр дисконтирования,
* $$ L( \cdot )~= L(t)$$ — численность населения в момент времени $$ t $$ , также интерпретируем как неэластичное предложение труда.
+
* $$ L( \cdot )~= L(t)$$ — численность населения в момент времени $$ t $$ , неэластичное предложение труда,
 
* $$ C( \cdot )~= C(t)$$ — общие потребительские расходы в момент времени $$t$$,
 
* $$ C( \cdot )~= C(t)$$ — общие потребительские расходы в момент времени $$t$$,
 
* $$ с( \cdot )~= с(t)$$ — потребительские расходы на душу населения в момент времени $$t$$,
 
* $$ с( \cdot )~= с(t)$$ — потребительские расходы на душу населения в момент времени $$t$$,
Строка 18: Строка 18:
 
=== Производство в экономике с репрезентативными домохозяйствами ===
 
=== Производство в экономике с репрезентативными домохозяйствами ===
 
'' Репрезентативное домохозяйство '' — домохозяйство, предпочтения которого при рациональном поведении (в задаче потребителя), приводят к таким решениям об уровне потребления и сбережения, что они эквивалентны совокупному потреблению (спросу) и сбережениям всех домохозяйств в экономике.  
 
'' Репрезентативное домохозяйство '' — домохозяйство, предпочтения которого при рациональном поведении (в задаче потребителя), приводят к таким решениям об уровне потребления и сбережения, что они эквивалентны совокупному потреблению (спросу) и сбережениям всех домохозяйств в экономике.  
Также предполагаем, что численность населения растёт с некоторым постоянным коэффициентом (темпом) $$\rho$$ и $$L(0)~=1$$, итого $$ L(t)~= e^{\rho t} $$.
+
Также предполагаем, что численность населения растёт с некоторым постоянным коэффициентом (темпом) $$n$$ и $$L(0)~=1$$, итого $$ L(t)~= e^{nt} $$.
  
 
Далее формализуем объём выпуска некоторого одного продукта $$Y(t)$$. Будем предполагать, что объём выпуска зависит от капитала $$K(t)$$ и от предложения труда $$L(t) $$. Объём выпуска описывается линейно-однородной ''производственной'' функцией:
 
Далее формализуем объём выпуска некоторого одного продукта $$Y(t)$$. Будем предполагать, что объём выпуска зависит от капитала $$K(t)$$ и от предложения труда $$L(t) $$. Объём выпуска описывается линейно-однородной ''производственной'' функцией:
Строка 28: Строка 28:
 
Введём $$y(t) = \frac{Y(t)}{L(t)}$$ и $$ k(t) = \frac{K(t)}{L(t)} $$ — объём выпуска и объём капитала на душу населения в момент времени $$t$$. Тогда в силу линейно-однородности производственной функции запишем предыдущее выражение в интенсивной форме:
 
Введём $$y(t) = \frac{Y(t)}{L(t)}$$ и $$ k(t) = \frac{K(t)}{L(t)} $$ — объём выпуска и объём капитала на душу населения в момент времени $$t$$. Тогда в силу линейно-однородности производственной функции запишем предыдущее выражение в интенсивной форме:
 
\begin{equation}
 
\begin{equation}
y(t) = f\left(k(t)\right)
+
y(t) = f\left(k(t)\right) \label{eq_y}
 
\end{equation}
 
\end{equation}
Структура валовых инвестиций $$I(t)$$ включает прирост капитала со временем, тоесть $$ \dot{K(t)} $$ и амортизацией капитала $$\delta K$$ с нормой амортизации $$\delta $$. Тогда получим:
+
Структура валовых инвестиций $$I(t)$$ включает прирост капитала со временем, то есть $$ \dot{K(t)} $$ и амортизацией капитала $$\delta K$$ с нормой амортизации $$\delta $$. Тогда получим:
 
\begin{equation}
 
\begin{equation}
 
I(t)= \dot{K(t)} + \delta K(t) \label{prb:1:1}
 
I(t)= \dot{K(t)} + \delta K(t) \label{prb:1:1}
Строка 40: Строка 40:
 
Тогда в силу \eqref{prb:1:1} и \eqref{prb:1:2} получим:
 
Тогда в силу \eqref{prb:1:1} и \eqref{prb:1:2} получим:
 
\begin{equation}
 
\begin{equation}
\dot{K(t)}~= Y(t) - C(t) - \delta K(t)  
+
\dot{K(t)}~= Y(t) - C(t) - \delta K(t) \label{prb:1:3}
 
\end{equation}
 
\end{equation}
Аналогично $$y(t)$$ и $$k(t)$$ введём потребление на душу населения $$c(t)= \frac{C(t)}{L(t)}$$
+
Для получения уравнения \eqref{prb:1:3} в интенсивной форме выведем формулу для $$\dot{k(t)}$$:
 +
\begin{gather*}
 +
  L(t)~=e^{nt} \rightarrow L'(t)~=nL(t) \\
 +
  \dot{k(t)}~= \left(\frac{K(t)}{L(t)}\right)'~= \frac{\dot{K(t)}L(t) - K(t)L'(t)}{L^2(t)}=  \\
 +
  = \frac{\dot{K(t)}L(t) - K(t)n L(t)}{L^2(t)} ~= \frac{\dot{K(t)} - nK(t)}{L(t)} ~= \frac{\dot{K(t)}}{L(t)} - nk(t)\\
 +
\end{gather*}
 +
Таким образом, получили:
 +
\begin{equation}
 +
\frac{\dot{K(t)}}{L(t)}~= \dot{k(t)} +nk(t) \label{prb:1:4}
 +
\end{equation}
 +
Аналогично $$y(t)$$ и $$k(t)$$ введём потребление на душу населения $$c(t)= \frac{C(t)}{L(t)}$$. Поделим обе части уравнения \eqref{prb:1:3} на $$L(t)$$ и, учитывая \eqref{prb:1:4} и \eqref{eq_y}, получим:
 +
\begin{gather*}
 +
\frac{\dot{K(t)}}{L(t)}~= y(t) - c(t) - \delta k(t) \\
 +
\dot{k(t)} +nk(t)~= y(t) - c(t) - \delta k(t) \\
 +
\dot{k(t)} ~= y(t) - c(t) - (\delta + n)k(t) \\
 +
\dot{k(t)} ~= y(t) - c(t) - (\delta + n)k(t) \\
 +
\dot{k(t)} ~= f\left(k(t) \right) - c(t) - (\delta + n)k(t) \\
 +
\end{gather*}
 +
Таким образом, получили аналог уравнения \eqref{prb:1:3} в интенсивной форме:
 +
\begin{equation}
 +
\dot{k(t)} ~= f\left(k(t) \right) - c(t) - (\delta + n)k(t)
 +
\end{equation}
 +
Уравнение в дальнейшем будем использовать, как ресурсное ограничение в задачи социального планировщика и в соответствующей задачи оптимального управления.
 
=== Дискретная задача центрального планирования ===  
 
=== Дискретная задача центрального планирования ===  
  

Версия 00:15, 20 февраля 2024

Определение

Модель Рамсея (модель Рамсея-Касса-Купманса)(модель репрезентативного агента) — неоклассическая модель оптимального экономического роста, являющаяся обобщением экономической модели Солоу. В модели Солоу норма сбережений предполагалась заданной экзогенно. В реальности она зависит от поведения жителей страны (макрорегиона), а, значит, от их собственных предпочтений. Поэтому в модели Рамсея норма сбережений определяется эндогенно.

Описание модели

Экономические обозначения

Для описания модели введём следующие обозначения, применяемые в теории экономической математики.

  • $$ u( \cdot ) $$ — функция полезности,
  • $$ \rho > 0 $$ — норма субъективных межвременных предпочтений, субъективно выбранный положительный параметр дисконтирования,
  • $$ L( \cdot )~= L(t)$$ — численность населения в момент времени $$ t $$ , неэластичное предложение труда,
  • $$ C( \cdot )~= C(t)$$ — общие потребительские расходы в момент времени $$t$$,
  • $$ с( \cdot )~= с(t)$$ — потребительские расходы на душу населения в момент времени $$t$$,
  • $$ K( \cdot )~= K(t)$$ — объём капитала в момент времени $$t$$,
  • $$ Y( \cdot )~= Y(t) $$ — объём выпуска в момент времени $$t$$,
  • $$ I( \cdot )~= I((t)$$ — объём валовых инвестиций в момент времени $$t$$,
  • $$r( \cdot ) ~= r(t) $$ — реальная доходность сбережений,
  • $$ \sigma $$ — эластичность межвременного замещения (elasticity of intertemporal substitution)
  • $$ \delta$$ — норма амортизации капитала

Производство в экономике с репрезентативными домохозяйствами

Репрезентативное домохозяйство — домохозяйство, предпочтения которого при рациональном поведении (в задаче потребителя), приводят к таким решениям об уровне потребления и сбережения, что они эквивалентны совокупному потреблению (спросу) и сбережениям всех домохозяйств в экономике. Также предполагаем, что численность населения растёт с некоторым постоянным коэффициентом (темпом) $$n$$ и $$L(0)~=1$$, итого $$ L(t)~= e^{nt} $$.

Далее формализуем объём выпуска некоторого одного продукта $$Y(t)$$. Будем предполагать, что объём выпуска зависит от капитала $$K(t)$$ и от предложения труда $$L(t) $$. Объём выпуска описывается линейно-однородной производственной функцией: \begin{equation} Y(t) = F\left(K(t), L(t) \right) \end{equation} Где $$ F'_{K} > 0, F'_{L} > 0, F"_{KK} < 0, F"_{LL} < 0$$.

Введём $$y(t) = \frac{Y(t)}{L(t)}$$ и $$ k(t) = \frac{K(t)}{L(t)} $$ — объём выпуска и объём капитала на душу населения в момент времени $$t$$. Тогда в силу линейно-однородности производственной функции запишем предыдущее выражение в интенсивной форме: \begin{equation} y(t) = f\left(k(t)\right) \label{eq_y} \end{equation} Структура валовых инвестиций $$I(t)$$ включает прирост капитала со временем, то есть $$ \dot{K(t)} $$ и амортизацией капитала $$\delta K$$ с нормой амортизации $$\delta $$. Тогда получим: \begin{equation} I(t)= \dot{K(t)} + \delta K(t) \label{prb:1:1} \end{equation} Далее, в силу предположения о закрытой экономики, получим следующую зависимость потребительских расходов $$C(t)$$, объёма инвестиций $$I(t)$$ и объёма выпуска $$Y(t)$$: \begin{equation} Y(t)~= C(t) + I(t) \label{prb:1:2} \end{equation} Тогда в силу \eqref{prb:1:1} и \eqref{prb:1:2} получим: \begin{equation} \dot{K(t)}~= Y(t) - C(t) - \delta K(t) \label{prb:1:3} \end{equation} Для получения уравнения \eqref{prb:1:3} в интенсивной форме выведем формулу для $$\dot{k(t)}$$: \begin{gather*} L(t)~=e^{nt} \rightarrow L'(t)~=nL(t) \\ \dot{k(t)}~= \left(\frac{K(t)}{L(t)}\right)'~= \frac{\dot{K(t)}L(t) - K(t)L'(t)}{L^2(t)}= \\ = \frac{\dot{K(t)}L(t) - K(t)n L(t)}{L^2(t)} ~= \frac{\dot{K(t)} - nK(t)}{L(t)} ~= \frac{\dot{K(t)}}{L(t)} - nk(t)\\ \end{gather*} Таким образом, получили: \begin{equation} \frac{\dot{K(t)}}{L(t)}~= \dot{k(t)} +nk(t) \label{prb:1:4} \end{equation} Аналогично $$y(t)$$ и $$k(t)$$ введём потребление на душу населения $$c(t)= \frac{C(t)}{L(t)}$$. Поделим обе части уравнения \eqref{prb:1:3} на $$L(t)$$ и, учитывая \eqref{prb:1:4} и \eqref{eq_y}, получим: \begin{gather*} \frac{\dot{K(t)}}{L(t)}~= y(t) - c(t) - \delta k(t) \\ \dot{k(t)} +nk(t)~= y(t) - c(t) - \delta k(t) \\ \dot{k(t)} ~= y(t) - c(t) - (\delta + n)k(t) \\ \dot{k(t)} ~= y(t) - c(t) - (\delta + n)k(t) \\ \dot{k(t)} ~= f\left(k(t) \right) - c(t) - (\delta + n)k(t) \\ \end{gather*} Таким образом, получили аналог уравнения \eqref{prb:1:3} в интенсивной форме: \begin{equation} \dot{k(t)} ~= f\left(k(t) \right) - c(t) - (\delta + n)k(t) \end{equation} Уравнение в дальнейшем будем использовать, как ресурсное ограничение в задачи социального планировщика и в соответствующей задачи оптимального управления.

Дискретная задача центрального планирования

Постановка задачи

Задача центрального планирования(задача социального планировщика) в закрытой экономике:

Пусть $$ u( \cdot ) $$ — функция мгновенной полезности. Аргументом функции будет являться потребительский расход $$c(t)$$ в момент времени $$ t $$.

Ввиду того, что мы рассматриваем модель репрезентативного агента, то параметр дисконтирования $$ \rho $$ у социального планировщика такой же, как и у индивидуальных домохозяйств. Тогда в качестве целевой функции, требующей максимизации рассмотрим: \begin{equation} U~=\int_{0}^{∞}{u\left(c(t) \right) e^{-\rho t} dt} \longrightarrow \max_{c} \end{equation} Где $$u\left(c(t)\right)$$ — сепарабельная функция. Тоесть полезность в каждый момент времени зависит только от текущего потребления.

Также $$u'(c) > 0$$ и $$\lim_{t \to \infty}{u'(c)}=0 $$ $$ \lim_{t \rightarrow 0}{u'(c)}= ∞$$

Вспомогательные утверждения

Правило Кейнса-Рамсея

Случай дискретного времени: \begin{equation} \frac{C_{t+1}}{C_{t}}~=\left(\frac{1+r}{1 +\rho } \right)^{\delta} \end{equation}

Случай непрерывного времени: \begin{equation} \frac{u'(C_{t+1})}{u'(C_t)}~=\left(\frac{1+r}{1 +\rho } \right) \end{equation}

Список литературы

С. М. Асеев, А. В. Кряжимский, "Принцип максимума Понтрягина и задачи оптимального экономического роста",

Веселов Д.А. Пекарский С.Э. "Макроэкономика финансовых рынков"

Ramsey F.P. A mathematical theory of saving.