Гильбертово пространство: различия между версиями
Перейти к навигации
Перейти к поиску
Kirich23 (обсуждение | вклад) |
Kirich23 (обсуждение | вклад) |
||
| Строка 4: | Строка 4: | ||
Полное евклидово (унитарное) бесконечномерное пространство называется Гильбертовым. | Полное евклидово (унитарное) бесконечномерное пространство называется Гильбертовым. | ||
Обозначается как $$H$$ . | Обозначается как $$H$$ . | ||
| + | |||
Гильбертово пространство это частный случай [https://sawiki.cs.msu.ru/index.php/%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE ''банахова пространства'']. | Гильбертово пространство это частный случай [https://sawiki.cs.msu.ru/index.php/%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE ''банахова пространства'']. | ||
Версия 01:33, 22 декабря 2024
Определение
Определение 1. Полное евклидово (унитарное) бесконечномерное пространство называется Гильбертовым. Обозначается как $$H$$ .
Гильбертово пространство это частный случай банахова пространства.
Связь нормы и скалярного произведения
В Гильбертовом пространстве, как и во всяком евклидовом или унитарном пространстве, норма согласована со скалярным произведением. В общем случае норма и скалярное произведение никак не связаны между собой.
В гильбертовом пространстве норма связана со скалярным произведением следующим образом: $$ ||x||=\sqrt{(x,x)} $$
Из аксиом скалярного произведения вытекает Неравенство Коши-Буняковкого
$$ |(x,y)|\leq ||x|||y|| $$(для любых x и y \in H)