Многозначные отображения и их свойства: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 4: Строка 4:
 
Отображение  $$F$$, которое каждому $$x \in X$$ ставит в соответствие непустое замкнутое подмножество $$F(x) \subset Y$$, называется '''многозначным отображением'''.
 
Отображение  $$F$$, которое каждому $$x \in X$$ ставит в соответствие непустое замкнутое подмножество $$F(x) \subset Y$$, называется '''многозначным отображением'''.
  
== Свойства ==
+
== Вспомогательные определения и утверждения ==
 
* Многозначное отображение $$F$$ называется ''секвенциально полунепрерывным сверху в точке $$x_0$$'' $$\in X$$, если для любой последовательности $$\{x_n\}$$, сходящейся к точке $$x_0$$, и любой последовательности $$\{y_n\}$$, для которой $$y_n \in F(x_n) \; \forall n$$, имеет место  
 
* Многозначное отображение $$F$$ называется ''секвенциально полунепрерывным сверху в точке $$x_0$$'' $$\in X$$, если для любой последовательности $$\{x_n\}$$, сходящейся к точке $$x_0$$, и любой последовательности $$\{y_n\}$$, для которой $$y_n \in F(x_n) \; \forall n$$, имеет место  
 
\[\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty,
 
\[\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty,
Строка 15: Строка 15:
 
     \text{dist}(y_0, F(x)) \rightarrow 0, x \rightarrow x_0, \; \forall y_0 \in F(x_0).
 
     \text{dist}(y_0, F(x)) \rightarrow 0, x \rightarrow x_0, \; \forall y_0 \in F(x_0).
 
\]
 
\]
* Многозначное отображение $$F$$ называется ''$$h$$-полунепрерывным сверху в точке $$x_0$$'' $$\in X$$, если для произвольного $$\epsilon > 0$$ существует такое $$\delta > 0$$, что  
+
* Многозначное отображение $$F$$ называется ''$$h$$-полунепрерывным сверху в точке $$x_0$$'' $$\in X$$, если для произвольного $$\varepsilon > 0$$ существует такое $$\delta > 0$$, что  
 
\[
 
\[
     F(x) \subset O^Y(F(x_0), \epsilon) \; \forall x \in O^X(x_0, \delta).
+
     F(x) \subset O^Y(F(x_0), \varepsilon) \; \forall x \in O^X(x_0, \delta).
 
\]
 
\]
 
Если многозначное отображение $$h$$-полунепрерывно сверху в каждой точке, то оно называется ''$$h$$-полунепрерывным сверху''.
 
Если многозначное отображение $$h$$-полунепрерывно сверху в каждой точке, то оно называется ''$$h$$-полунепрерывным сверху''.
* Многозначное отображение $$F$$ называется ''$$h$$-полунепрерывным снизу в точке $$x_0$$'' $$\in X$$, если для произвольного $$\epsilon > 0$$ существует такое $$\delta > 0$$, что
+
* Многозначное отображение $$F$$ называется ''$$h$$-полунепрерывным снизу в точке $$x_0$$'' $$\in X$$, если для произвольного $$\varepsilon > 0$$ существует такое $$\delta > 0$$, что
 
\[
 
\[
     O^Y(F(x), \epsilon) \supset F(x_0) \; \forall x \in O^X(x_0, \delta).
+
     O^Y(F(x), \varepsilon) \supset F(x_0) \; \forall x \in O^X(x_0, \delta).
 
\]
 
\]
 
Если многозначное отображение $$h$$-полунепрерывно снизу в каждой точке, то оно называется ''$$h$$-полунепрерывным снизу''.
 
Если многозначное отображение $$h$$-полунепрерывно снизу в каждой точке, то оно называется ''$$h$$-полунепрерывным снизу''.
Строка 38: Строка 38:
 
     \text{gph}F = \{(x, y) \in X \times Y: \; y \in F(x)\}.
 
     \text{gph}F = \{(x, y) \in X \times Y: \; y \in F(x)\}.
 
\]
 
\]
Многозначное отображение называется ''замкнутым'', если его график замкнут.
+
* Многозначное отображение называется ''замкнутым'', если его график замкнут.
 +
 
 +
* Многозначное отображение $$F$$ называется ''локально компактным'', если для любой точки $$x \in X$$ существует такая ее окрестность $$O(x)$$, что множество $$F(O(x))$$ предкомпактно (т.е. оно содержится в некотором компакте).
 +
 
 +
Рассмотрим определения полунепрерывности сверху/снизу в точке, когда $$X \; \text{и} \; Y$$ являются лишь топологическими пространствами.
 +
 
 +
* Многозначное отображение $$F$$ называется ''полунепрерывным сверху в точке $$x_0 \in X$$'', если для любой окрестности $$O^Y$$ множества $$F(x_0)$$ существует такая окрестность $$O^X$$ точки $$x_0, \; \text{что} \; F(O^X) \subset O^Y$$.
 +
 
 +
* Многозначное отображение $$F$$ называется ''полунепрерывным снизу в точке $$x_0 \in X$$'', если для любого открытого множества $$O^Y \subset Y$$ такого, что $$O^Y \cap F(x_0) \neq \varnothing$$ существует окрестность $$O^X$$ точки $$x_0$$ такая, что $$F(x) \cap O^Y \neq \varnothing$$ для любого $$x \in O^X$$.
  
'''Теорема'''
+
== Свойства ==
 +
'''Теорема 1.'''
  
 
:''Если многозначное отображение $$F$$ секвенциально полунепрерывно сверху, то оно замкнуто.''
 
:''Если многозначное отображение $$F$$ секвенциально полунепрерывно сверху, то оно замкнуто.''
  
$$\underline{Доказательство.}$$ Пусть последовательность $$\{(x_n, y_n)\}$$ лежит в графике $$\text{gph}F$$ и сходится к точке $$(x_0, y_0)$$. Достаточно доказать, что $$(x_0, y_0) \in \text{gph}F$$. Действительно, $$y_n \in F(x_n) \; \forall n$$ и $$x_n \rightarrow x_0, y_n \rightarrow y_0, n \rightarrow \infty.$$ Поэтому, в силу секвенциальной полунепрерывности сверху отображения $$F$$ в точке $$x_0$$ имеем $$\text{dist}(y_n, F(x_0)) \rightarrow 0.$$ Отсюда в силу замкнутости множества $$F(x_0)$$ получаем, что $$y_0 \in F(x_0)$$ и, значит, $$(x_0, y_0) \in \text{gph}F$$. Утверждение доказано.
+
'''Доказательство.''' Пусть последовательность $$\{(x_n, y_n)\}$$ лежит в графике $$\text{gph}F$$ и сходится к точке $$(x_0, y_0)$$. Достаточно доказать, что $$(x_0, y_0) \in \text{gph}F$$. Действительно, $$y_n \in F(x_n) \; \forall n$$ и $$x_n \rightarrow x_0, y_n \rightarrow y_0, n \rightarrow \infty.$$ Поэтому, в силу секвенциальной полунепрерывности сверху отображения $$F$$ в точке $$x_0$$ имеем $$\text{dist}(y_n, F(x_0)) \rightarrow 0.$$ Отсюда в силу замкнутости множества $$F(x_0)$$ получаем, что $$y_0 \in F(x_0)$$ и, значит, $$(x_0, y_0) \in \text{gph}F$$. $$\blacksquare$$
  
'''Теорема'''
+
'''Теорема 2.'''
  
 
:''Пусть пространство $$Y$$ [https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%B0%D0%BA%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE компактно]. Тогда многозначное отображение секвенциально полунепрерывно сверху тогда и только тогда, когда оно замкнуто.''
 
:''Пусть пространство $$Y$$ [https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%B0%D0%BA%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE компактно]. Тогда многозначное отображение секвенциально полунепрерывно сверху тогда и только тогда, когда оно замкнуто.''
  
$$\underline{Доказательство.}$$ В силу предыдущей теоремы достаточно доказать, что если многозначное отображение $$F$$ замкнуто, то оно секвенциально полунепрерывно сверху в каждой точке $$x_0 \in X$$. Пусть последовательность $$\{x_n\}$$ сходится к точке $$x_0$$ и для последовательности $$\{y_n\}$$ имеет место $$y_n \in F(x_n) \; \forall n$$. Докажем, что тогда $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n\rightarrow \infty$$.
+
'''Доказательство.''' В силу предыдущей теоремы достаточно доказать, что если многозначное отображение $$F$$ замкнуто, то оно секвенциально полунепрерывно сверху в каждой точке $$x_0 \in X$$. Пусть последовательность $$\{x_n\}$$ сходится к точке $$x_0$$ и для последовательности $$\{y_n\}$$ имеет место $$y_n \in F(x_n) \; \forall n$$. Докажем, что тогда $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n\rightarrow \infty$$.
  
Будем действовать от противного. Пусть существует такое $$\epsilon > 0$$, что после перехода от последовательности $$\{y_n\}$$ к ее подпоследовательности выполняется $$\text{dist}(y_n, F(x_0)) \geqslant \epsilon \; \forall n.$$ В силу компактности пространства $$Y$$, переходя еще раз к подпоследовательности, будем считать, что $$y_n \rightarrow y_0$$ для некоторого $$y_0 \in Y$$. Тогда $$(x_n, y_n) \rightarrow (x_0, y_0) \; \text{и} \; (x_n, y_n) \in \text{gph}F \; \forall n.$$ Поэтому $$(x_0, y_0) \in \text{gph}F$$ в силу замкнутости множества $$\text{gph}F$$ и, значит,
+
Будем действовать от противного. Пусть существует такое $$\varepsilon > 0$$, что после перехода от последовательности $$\{y_n\}$$ к ее подпоследовательности выполняется $$\text{dist}(y_n, F(x_0)) \geqslant \varepsilon \; \forall n.$$ В силу компактности пространства $$Y$$, переходя еще раз к подпоследовательности, будем считать, что $$y_n \rightarrow y_0$$ для некоторого $$y_0 \in Y$$. Тогда $$(x_n, y_n) \rightarrow (x_0, y_0) \; \text{и} \; (x_n, y_n) \in \text{gph}F \; \forall n.$$ Поэтому $$(x_0, y_0) \in \text{gph}F$$ в силу замкнутости множества $$\text{gph}F$$ и, значит,
 
\[
 
\[
 
     y_0 \in F(x_0) \Rightarrow \text{dist}(y_n, F(x_0)) \leqslant \rho_Y(y_n, y_0),
 
     y_0 \in F(x_0) \Rightarrow \text{dist}(y_n, F(x_0)) \leqslant \rho_Y(y_n, y_0),
 
\]
 
\]
откуда $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty.$$ Полученное противоречие с установленным выше неравенством завершает доказательство.
+
откуда $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty.$$ Полученное противоречие с установленным выше неравенством завершает доказательство. $$\blacksquare$$
  
* Многозначное отображение $$F$$ называется ''локально компактным'', если для любой точки $$x \in X$$ существует такая ее окрестность $$O(x)$$, что множество $$F(O(x))$$ предкомпактно (т.е. оно содержится в некотором компакте).
+
'''Теорема 3.'''
 
 
'''Теорема'''
 
  
 
:''Пусть многозначное отображение $$F$$ замкнуто и локально компактно. Тогда оно секвенциально полунепрерывно сверху.''
 
:''Пусть многозначное отображение $$F$$ замкнуто и локально компактно. Тогда оно секвенциально полунепрерывно сверху.''
  
$$\underline{Доказательство}$$ этого утверждения повторяет доказательство теоремы выше.
+
'''Доказательство''' этого утверждения повторяет доказательство теоремы 2.
  
 
Пусть заданы многозначные отображения $$F_j, j \in J$$, где $$J$$ некоторое множество индексов. Определим новые многозначные отображения $$-$$ объединение и пересечение исходных отображений $$-$$ соотношениями
 
Пусть заданы многозначные отображения $$F_j, j \in J$$, где $$J$$ некоторое множество индексов. Определим новые многозначные отображения $$-$$ объединение и пересечение исходных отображений $$-$$ соотношениями
Строка 75: Строка 82:
 
\]
 
\]
  
'''Теорема'''
+
'''Теорема 4.'''
  
 
:''Пусть заданы два многозначных отображения: $$F_1 \; \text{и} \; F_2$$, причем $$F_1$$ замкнуто, а $$F_2$$ полунепрерывно сверху и компактнозначно. Тогда если их пересечение $$F = F_1 \cap F_2$$ корректно определено, то оно полунепрерывно сверху.''
 
:''Пусть заданы два многозначных отображения: $$F_1 \; \text{и} \; F_2$$, причем $$F_1$$ замкнуто, а $$F_2$$ полунепрерывно сверху и компактнозначно. Тогда если их пересечение $$F = F_1 \cap F_2$$ корректно определено, то оно полунепрерывно сверху.''
  
$$\underline{Доказательство.}$$ Возьмем произвольную точку $$x_0 \in X$$ и докажем, что многозначное отображение $$F$$ в ней секвенциально полунепрерывно сверху. Пусть последовательность $$\{x_n\}$$ сходится к точке $$x_0$$ и $$y_n \in F(x_n) \; \forall n.$$ Докажем, что $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty$$. Предположим противное. Тогда существует такое $$\epsilon > 0$$, что после перехода к подпоследовательности, имеем $$\text{dist}(y_n, F(x_0)) \geqslant \epsilon \; \forall n.$$
+
'''Доказательство.''' Возьмем произвольную точку $$x_0 \in X$$ и докажем, что многозначное отображение $$F$$ в ней секвенциально полунепрерывно сверху. Пусть последовательность $$\{x_n\}$$ сходится к точке $$x_0$$ и $$y_n \in F(x_n) \; \forall n.$$ Докажем, что $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty$$. Предположим противное. Тогда существует такое $$\varepsilon > 0$$, что после перехода к подпоследовательности, имеем $$\text{dist}(y_n, F(x_0)) \geqslant \varepsilon \; \forall n.$$
  
 
Но $$y_n \in F_2(x_n) \; \forall n \; \text{и, значит,} \; \text{dist}(y_n, F_2(x_0)) \rightarrow 0$$ в силу секвенциальной полунепрерывности сверху $$F_2$$. Докажем существование такого $$y_0 \in F_2(x_0)$$, что после перехода к подпоследовательности имеет место $$y_n \rightarrow y_0$$. Действительно, в силу доказанного, для каждого $$n$$ существует такое $$\widetilde{y_n} \in F_2(x_0)$$, что $$\rho_Y(\widetilde{y_n}, y_n) \rightarrow 0.$$ В силу компактности множества $$F_2(x_0)$$, переходя к подпоследовательности, получаем, что $$\widetilde{y_n} \rightarrow y_0$$ для некоторого $$y_0 \in F_2(x_0)$$. Отсюда с помощью неравенства треугольника получаем $$y_n \rightarrow y_0$$, что доказывает треубемое.
 
Но $$y_n \in F_2(x_n) \; \forall n \; \text{и, значит,} \; \text{dist}(y_n, F_2(x_0)) \rightarrow 0$$ в силу секвенциальной полунепрерывности сверху $$F_2$$. Докажем существование такого $$y_0 \in F_2(x_0)$$, что после перехода к подпоследовательности имеет место $$y_n \rightarrow y_0$$. Действительно, в силу доказанного, для каждого $$n$$ существует такое $$\widetilde{y_n} \in F_2(x_0)$$, что $$\rho_Y(\widetilde{y_n}, y_n) \rightarrow 0.$$ В силу компактности множества $$F_2(x_0)$$, переходя к подпоследовательности, получаем, что $$\widetilde{y_n} \rightarrow y_0$$ для некоторого $$y_0 \in F_2(x_0)$$. Отсюда с помощью неравенства треугольника получаем $$y_n \rightarrow y_0$$, что доказывает треубемое.
  
Кроме того, $$y_n \in F_1(x_n) \; \forall n$$, откуда в силу замкнутости $$F_1$$ имеем $$y_0 \in F_1(x_0)$$. Таким образом, доказано, что $$y_0 \in F(x_0)$$ и, значит, для указанной подпоследовательности имеет место $$\text{dist}(y_n, F(x_0)) \rightarrow 0$$, что противоречит выбору $$\epsilon > 0$$. Утверждение доказано.
+
Кроме того, $$y_n \in F_1(x_n) \; \forall n$$, откуда в силу замкнутости $$F_1$$ имеем $$y_0 \in F_1(x_0)$$. Таким образом, доказано, что $$y_0 \in F(x_0)$$ и, значит, для указанной подпоследовательности имеет место $$\text{dist}(y_n, F(x_0)) \rightarrow 0$$, что противоречит выбору $$\varepsilon > 0$$. $$\blacksquare$$
 
 
Рассмотрим определения полунепрерывности сверху/снизу в точке, когда $$X \; \text{и} \; Y$$ являются лишь топологическими пространствами.
 
 
 
* Многозначное отображение $$F$$ называется ''полунепрерывным сверху в точке $$x_0 \in X$$'', если для любой окрестности $$O^Y$$ множества $$F(x_0)$$ существует такая окрестность $$O^X$$ точки $$x_0, \; \text{что} \; F(O^X) \subset O^Y$$.
 
 
 
* Многозначное отображение $$F$$ называется ''полунепрерывным снизу в точке $$x_0 \in X$$'', если для любого открытого множества $$O^Y \subset Y$$ такого, что $$O^Y \cap F(x_0) \neq \varnothing$$ существует окрестность $$O^X$$ точки $$x_0$$ такая, что $$F(x) \cap O^Y \neq \varnothing$$ для любого $$x \in O^X$$.
 
  
 
== Примеры ==
 
== Примеры ==

Версия 16:01, 30 октября 2022

Пусть $$(X, \rho_X)$$ и $$(Y, \rho_Y)$$ $$-$$ метрические пространства.

Определение

Отображение $$F$$, которое каждому $$x \in X$$ ставит в соответствие непустое замкнутое подмножество $$F(x) \subset Y$$, называется многозначным отображением.

Вспомогательные определения и утверждения

  • Многозначное отображение $$F$$ называется секвенциально полунепрерывным сверху в точке $$x_0$$ $$\in X$$, если для любой последовательности $$\{x_n\}$$, сходящейся к точке $$x_0$$, и любой последовательности $$\{y_n\}$$, для которой $$y_n \in F(x_n) \; \forall n$$, имеет место

\[\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty, \]

где $$\text{dist}(y_n, F(x_0)) = \inf\{\rho(y, x), y \in y_n, x \in F(x_n)\}$$.

Если многозначное отображение секвенциально полунепрерывно сверху в каждой точке, то оно называется секвенциально полунепрерывным сверху.

  • Многозначное отображение $$F$$ называется секвенциально полунепрерывным снизу в точке $$x_0$$ $$\in X$$, если для любой последовательности $$\{x_n\}$$, сходящейся к точке $$x_0$$, и любого $$y_0 \in F(x_0)$$ существует последовательность $$\{y_n\}$$ такая, что $$y_n \in F(x_n) \; \forall n \; \text{и} \; y_n \rightarrow y_0, n \rightarrow \infty$$.

Если многозначное отображение секвенциально полунепрерывно снизу в каждой точке, то оно называется секвенциально полунепрерывным снизу, что равносильно тому, что \[ \text{dist}(y_0, F(x)) \rightarrow 0, x \rightarrow x_0, \; \forall y_0 \in F(x_0). \]

  • Многозначное отображение $$F$$ называется $$h$$-полунепрерывным сверху в точке $$x_0$$ $$\in X$$, если для произвольного $$\varepsilon > 0$$ существует такое $$\delta > 0$$, что

\[ F(x) \subset O^Y(F(x_0), \varepsilon) \; \forall x \in O^X(x_0, \delta). \] Если многозначное отображение $$h$$-полунепрерывно сверху в каждой точке, то оно называется $$h$$-полунепрерывным сверху.

  • Многозначное отображение $$F$$ называется $$h$$-полунепрерывным снизу в точке $$x_0$$ $$\in X$$, если для произвольного $$\varepsilon > 0$$ существует такое $$\delta > 0$$, что

\[ O^Y(F(x), \varepsilon) \supset F(x_0) \; \forall x \in O^X(x_0, \delta). \] Если многозначное отображение $$h$$-полунепрерывно снизу в каждой точке, то оно называется $$h$$-полунепрерывным снизу.

  • Многозначное отображение $$F$$ называется непрерывным, если оно одновременно $$h$$-полунепрерывно и сверху, и снизу.

Через $$X \times Y$$ обозначим декартово произведение метрических пространств $$(X, \rho_X) \; \text{и} \; (Y, \rho_Y)$$, состоящее из множества упорядоченных пар $$(x, y), \; x\in X, \; y \in Y$$, с метрикой, определяемой соотношением \[ \rho((x_1, y_1), (x_2, y_2)) = \rho_X(x_1, x_2) + \rho_Y(y_1, y_2). \] Для сходимости в метрическом пространстве $$X \times Y$$ справедливо следующее: \[ (x_n, y_n) \rightarrow (x_0, y_0) \Leftrightarrow x_n \rightarrow x_0, \; y_n \rightarrow y_0, \; n \rightarrow \infty. \]

  • Графиком многозначного отображения $$F$$ называется множество

\[ \text{gph}F = \{(x, y) \in X \times Y: \; y \in F(x)\}. \]

  • Многозначное отображение называется замкнутым, если его график замкнут.
  • Многозначное отображение $$F$$ называется локально компактным, если для любой точки $$x \in X$$ существует такая ее окрестность $$O(x)$$, что множество $$F(O(x))$$ предкомпактно (т.е. оно содержится в некотором компакте).

Рассмотрим определения полунепрерывности сверху/снизу в точке, когда $$X \; \text{и} \; Y$$ являются лишь топологическими пространствами.

  • Многозначное отображение $$F$$ называется полунепрерывным сверху в точке $$x_0 \in X$$, если для любой окрестности $$O^Y$$ множества $$F(x_0)$$ существует такая окрестность $$O^X$$ точки $$x_0, \; \text{что} \; F(O^X) \subset O^Y$$.
  • Многозначное отображение $$F$$ называется полунепрерывным снизу в точке $$x_0 \in X$$, если для любого открытого множества $$O^Y \subset Y$$ такого, что $$O^Y \cap F(x_0) \neq \varnothing$$ существует окрестность $$O^X$$ точки $$x_0$$ такая, что $$F(x) \cap O^Y \neq \varnothing$$ для любого $$x \in O^X$$.

Свойства

Теорема 1.

Если многозначное отображение $$F$$ секвенциально полунепрерывно сверху, то оно замкнуто.

Доказательство. Пусть последовательность $$\{(x_n, y_n)\}$$ лежит в графике $$\text{gph}F$$ и сходится к точке $$(x_0, y_0)$$. Достаточно доказать, что $$(x_0, y_0) \in \text{gph}F$$. Действительно, $$y_n \in F(x_n) \; \forall n$$ и $$x_n \rightarrow x_0, y_n \rightarrow y_0, n \rightarrow \infty.$$ Поэтому, в силу секвенциальной полунепрерывности сверху отображения $$F$$ в точке $$x_0$$ имеем $$\text{dist}(y_n, F(x_0)) \rightarrow 0.$$ Отсюда в силу замкнутости множества $$F(x_0)$$ получаем, что $$y_0 \in F(x_0)$$ и, значит, $$(x_0, y_0) \in \text{gph}F$$. $$\blacksquare$$

Теорема 2.

Пусть пространство $$Y$$ компактно. Тогда многозначное отображение секвенциально полунепрерывно сверху тогда и только тогда, когда оно замкнуто.

Доказательство. В силу предыдущей теоремы достаточно доказать, что если многозначное отображение $$F$$ замкнуто, то оно секвенциально полунепрерывно сверху в каждой точке $$x_0 \in X$$. Пусть последовательность $$\{x_n\}$$ сходится к точке $$x_0$$ и для последовательности $$\{y_n\}$$ имеет место $$y_n \in F(x_n) \; \forall n$$. Докажем, что тогда $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n\rightarrow \infty$$.

Будем действовать от противного. Пусть существует такое $$\varepsilon > 0$$, что после перехода от последовательности $$\{y_n\}$$ к ее подпоследовательности выполняется $$\text{dist}(y_n, F(x_0)) \geqslant \varepsilon \; \forall n.$$ В силу компактности пространства $$Y$$, переходя еще раз к подпоследовательности, будем считать, что $$y_n \rightarrow y_0$$ для некоторого $$y_0 \in Y$$. Тогда $$(x_n, y_n) \rightarrow (x_0, y_0) \; \text{и} \; (x_n, y_n) \in \text{gph}F \; \forall n.$$ Поэтому $$(x_0, y_0) \in \text{gph}F$$ в силу замкнутости множества $$\text{gph}F$$ и, значит, \[ y_0 \in F(x_0) \Rightarrow \text{dist}(y_n, F(x_0)) \leqslant \rho_Y(y_n, y_0), \] откуда $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty.$$ Полученное противоречие с установленным выше неравенством завершает доказательство. $$\blacksquare$$

Теорема 3.

Пусть многозначное отображение $$F$$ замкнуто и локально компактно. Тогда оно секвенциально полунепрерывно сверху.

Доказательство этого утверждения повторяет доказательство теоремы 2.

Пусть заданы многозначные отображения $$F_j, j \in J$$, где $$J$$ некоторое множество индексов. Определим новые многозначные отображения $$-$$ объединение и пересечение исходных отображений $$-$$ соотношениями \[ \Big(\bigcup_{j \in J}F_{j}\Big)(x) = \bigcup_{j \in J}F_{j}(x), \; \Big(\bigcap_{j \in J}F_{j}\Big)(x) = \bigcap_{j \in J}F_{j}(x) \] При этом предполагается, что в формуле для объединения множество индексов $$J$$ конечно и второе многозначное отображение корректно определено, т.е. что \[ \bigcap_{j \in J}F_{j}(x) \neq \varnothing \; \forall x. \]

Теорема 4.

Пусть заданы два многозначных отображения: $$F_1 \; \text{и} \; F_2$$, причем $$F_1$$ замкнуто, а $$F_2$$ полунепрерывно сверху и компактнозначно. Тогда если их пересечение $$F = F_1 \cap F_2$$ корректно определено, то оно полунепрерывно сверху.

Доказательство. Возьмем произвольную точку $$x_0 \in X$$ и докажем, что многозначное отображение $$F$$ в ней секвенциально полунепрерывно сверху. Пусть последовательность $$\{x_n\}$$ сходится к точке $$x_0$$ и $$y_n \in F(x_n) \; \forall n.$$ Докажем, что $$\text{dist}(y_n, F(x_0)) \rightarrow 0, n \rightarrow \infty$$. Предположим противное. Тогда существует такое $$\varepsilon > 0$$, что после перехода к подпоследовательности, имеем $$\text{dist}(y_n, F(x_0)) \geqslant \varepsilon \; \forall n.$$

Но $$y_n \in F_2(x_n) \; \forall n \; \text{и, значит,} \; \text{dist}(y_n, F_2(x_0)) \rightarrow 0$$ в силу секвенциальной полунепрерывности сверху $$F_2$$. Докажем существование такого $$y_0 \in F_2(x_0)$$, что после перехода к подпоследовательности имеет место $$y_n \rightarrow y_0$$. Действительно, в силу доказанного, для каждого $$n$$ существует такое $$\widetilde{y_n} \in F_2(x_0)$$, что $$\rho_Y(\widetilde{y_n}, y_n) \rightarrow 0.$$ В силу компактности множества $$F_2(x_0)$$, переходя к подпоследовательности, получаем, что $$\widetilde{y_n} \rightarrow y_0$$ для некоторого $$y_0 \in F_2(x_0)$$. Отсюда с помощью неравенства треугольника получаем $$y_n \rightarrow y_0$$, что доказывает треубемое.

Кроме того, $$y_n \in F_1(x_n) \; \forall n$$, откуда в силу замкнутости $$F_1$$ имеем $$y_0 \in F_1(x_0)$$. Таким образом, доказано, что $$y_0 \in F(x_0)$$ и, значит, для указанной подпоследовательности имеет место $$\text{dist}(y_n, F(x_0)) \rightarrow 0$$, что противоречит выбору $$\varepsilon > 0$$. $$\blacksquare$$

Примеры

  1. Пусть $$X=Y=\mathbb{R}$$. Ставя в соответствие каждому значению $$x\in X$$ отрезок $$[-|x|,\,|x|]$$, мы получаем многозначное отображение $$F:\mathbb{R} \to \Omega (\mathbb{R} ).$$
  2. Пусть $$F -$$ секвенциально полунепрерывное ($$h$$-полунепрерывное) снизу многозначное отображение. Возьмем точку $$x_0 \in X$$, и пусть $$A \subset F(x_0) -$$ произвольное замкнутое подмножество (например, $$A = \{y_0\}$$, где $$y_0 -$$ заданная точка из $$F(x_0)$$). Положим

\begin{equation*} \widetilde{F}(x) = \begin{cases} F(x), &x \neq x_0,\\ A, &x = x_0. \end{cases} \end{equation*}

Тогда $$\widetilde{F}$$ также является секвенциально полунепрерыным ($$h$$-полнупрерывным) снизу многозначным отображением.

Многозначные отображения находят приложения в различных областях математики: негладком и выпуклом анализе, теории дифференциальных уравнений, теории управления, теории игр и математической экономике.

Список литературы

Арутюнов А. В. Лекции по выпуклому и многозначному анализу. — М.: ФИЗМАТЛИТ, 2014