Задача быстродействия "из множества во множество": различия между версиями
Gleb22 (обсуждение | вклад) (Новая страница: «== Постановка задачи == Пусть задана система: \begin{cases} \dot x(t) = A(t)x(t) + B(t)u(t) + f(t), x(t_0) \in X^0, x(t_...») |
Gleb22 (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
== Постановка задачи == | == Постановка задачи == | ||
− | Пусть | + | '''Задача быстродействия''' - задача перевода системы из начального фиксированного положения в конечное, также фиксированное, положение за минимальное время. |
+ | Пусть система определяется условиями: | ||
\begin{cases} | \begin{cases} | ||
− | + | \dot x(t) = A(t)x(t) + B(t)u(t) + f(t), \\ | |
− | + | x(t_0) \in \mathcal{X}^0, x(t_1) \in \mathcal{X}^1, \\ | |
− | + | u(t) \in \mathcal{P}(t) \in \text{conv}\mathbb{R}^n, \\ | |
− | + | \mathcal{X}^0, \mathcal{X}^1 \in \text{conv}\mathbb{R}^n, \\ | |
+ | t_0 - \text{фиксировано}, \\ | ||
+ | t_1 - t_0 \rightarrow \underset{u(\cdot)}{inf}, | ||
\end{cases} | \end{cases} | ||
+ | где \( A(t), B(t), f(t) \) - непрерывны, а \( \mathcal{P} \) непрерывно как многозначное отображение (это требование гарантирует нам, что для любого \( l: \rho(l\vert\mathcal{P}(\tau))\) по \(\tau\) непрерывна\(^1\)). | ||
+ | |||
+ | \(^1\)В частности, при \(m=1\) множество \(\mathcal{P}\) выглядит как \(\mathcal{P}(\tau) = [a(\tau), b(\tau)]\); неперерывность многозначного отображения означает, что \(a(\tau), b(\tau)\) - непрерывны. | ||
+ | == Множества достижимости и разрешимости == | ||
+ | '''Множеством достижимости''' в момент времени \(t\) будем называть \(\mathcal{X}[t] = \mathcal{X}(t, t_0, \mathcal{X}^0) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^0 \in \mathcal{X}^0: x(t, t_0, x^0| u(\cdot)) = x\} = \underset{x^0 \in \mathcal{X}^0}{\cup}\mathcal{X}(t, t_0, x^0)\) | ||
+ | '''Множеством разрешимости''' в момент времени \(t\) будем называть \(\mathcal{W}[t] = \mathcal{W}(t, t_1, \mathcal{X}^1) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^1 \in \mathcal{X}^1: x(t, t_1, x^1| u(\cdot)) = x\} = \underset{x^1 \in \mathcal{X}^1}{\cup}\mathcal{W}(t, t_1, x^1)\) |
Версия 03:34, 11 ноября 2022
Постановка задачи
Задача быстродействия - задача перевода системы из начального фиксированного положения в конечное, также фиксированное, положение за минимальное время. Пусть система определяется условиями: \begin{cases} \dot x(t) = A(t)x(t) + B(t)u(t) + f(t), \\ x(t_0) \in \mathcal{X}^0, x(t_1) \in \mathcal{X}^1, \\ u(t) \in \mathcal{P}(t) \in \text{conv}\mathbb{R}^n, \\ \mathcal{X}^0, \mathcal{X}^1 \in \text{conv}\mathbb{R}^n, \\ t_0 - \text{фиксировано}, \\ t_1 - t_0 \rightarrow \underset{u(\cdot)}{inf}, \end{cases} где \( A(t), B(t), f(t) \) - непрерывны, а \( \mathcal{P} \) непрерывно как многозначное отображение (это требование гарантирует нам, что для любого \( l: \rho(l\vert\mathcal{P}(\tau))\) по \(\tau\) непрерывна\(^1\)).
\(^1\)В частности, при \(m=1\) множество \(\mathcal{P}\) выглядит как \(\mathcal{P}(\tau) = [a(\tau), b(\tau)]\); неперерывность многозначного отображения означает, что \(a(\tau), b(\tau)\) - непрерывны.
Множества достижимости и разрешимости
Множеством достижимости в момент времени \(t\) будем называть \(\mathcal{X}[t] = \mathcal{X}(t, t_0, \mathcal{X}^0) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^0 \in \mathcal{X}^0: x(t, t_0, x^0| u(\cdot)) = x\} = \underset{x^0 \in \mathcal{X}^0}{\cup}\mathcal{X}(t, t_0, x^0)\) Множеством разрешимости в момент времени \(t\) будем называть \(\mathcal{W}[t] = \mathcal{W}(t, t_1, \mathcal{X}^1) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^1 \in \mathcal{X}^1: x(t, t_1, x^1| u(\cdot)) = x\} = \underset{x^1 \in \mathcal{X}^1}{\cup}\mathcal{W}(t, t_1, x^1)\)