Задача Майера-Больца: различия между версиями
Перейти к навигации
Перейти к поиску
Ulyana (обсуждение | вклад) |
Ulyana (обсуждение | вклад) |
||
Строка 12: | Строка 12: | ||
\mathcal{J} \displaystyle = \int\limits_{t_{0}}^{t_{1}} f^{0}(x(t), u(t))dt + \phi(x(t_{1})) \to \inf_{u(\cdot)} | \mathcal{J} \displaystyle = \int\limits_{t_{0}}^{t_{1}} f^{0}(x(t), u(t))dt + \phi(x(t_{1})) \to \inf_{u(\cdot)} | ||
\end{gather*} | \end{gather*} | ||
− | Полученная задача называется задачей Майера-Больца | + | Полученная задача называется '''задачей Майера-Больца'''. |
== Формулировка Принципа максимума Л.С. Понтрягина == | == Формулировка Принципа максимума Л.С. Понтрягина == |
Версия 13:25, 26 ноября 2021
Задача Майера-Больца - это задача оптимального управления со свободным правым концом и интегрально-терминальным функционалом.
Определение
Рассмотрим задачу оптимального управления \begin{gather*} \begin{cases} \dot{x} = f(t, x, u) \\ x(t_{0}) = x^{0} \end{cases} \end{gather*} $$t_{0}, x^{0}, t_{1}$$ - фиксированы \begin{gather*} \mathcal{J} \displaystyle = \int\limits_{t_{0}}^{t_{1}} f^{0}(x(t), u(t))dt + \phi(x(t_{1})) \to \inf_{u(\cdot)} \end{gather*} Полученная задача называется задачей Майера-Больца.
Формулировка Принципа максимума Л.С. Понтрягина
Принцип максимума Понтрягина (далее ПМП) утверждает, что