Системы множеств: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 52: Строка 52:
  
 
Таким образом, единица системы множеств $$S$$ есть не что иное, как максимальное множество этой системы, содержащее все другие входящие в $$S$$ множества.
 
Таким образом, единица системы множеств $$S$$ есть не что иное, как максимальное множество этой системы, содержащее все другие входящие в $$S$$ множества.
 +
 +
* '''Определение'''. Минимальным кольцом $$K(S)$$ называется кольцо $$K$$, которое содержится в любом кольце, содержащем $$S$$.
 +
Рассмотрим все кольца, содержащие $$S$$. Такие кольца существуют; примером может служить множество всех подмножеств $$S$$. Возьмем теперь пересечение всех таких колец. Легко видеть, что это и будет минимальное кольцо $$K(S)$$. Таким образом, минимальное кольцо существует.
 +
В общем случае, описание кольца может быть трудной задачей, поэтому мы рассмотрим понятие полукольца.
  
 
* '''Определение'''. Система множеств $$S$$ называется ''полукольцом'', если:
 
* '''Определение'''. Система множеств $$S$$ называется ''полукольцом'', если:

Версия 00:49, 20 ноября 2023

Аннотация

В этой статье будут рассматриваются системы множеств, т.е. те множества, элементы которых сами представляют собой какие-либо множества. Мотивация изучения этих объектов состоит в том, что они служат фундаментом при изложении общей теории меры.

Операции над множествами

  • Определение. Объединением множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C = A \cup B$$), состоящее из элементов, которые принадлежат хотя бы одному из множеств $$A$$ или $$B$$.

Множество $$C$$ называется объединением множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcup_{\alpha \in I}^{} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат хотя бы одному из множеств $$A_\alpha$$, т.е. \[ x \in C \Longleftrightarrow \exists \alpha \in I: x \in A_\alpha . \]

  • Определение. Пересечением множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$C= A \cap B)$$, состоящее из элементов, которые принадлежат каждому из множеств $$A$$ и $$B$$.

Множество $$C$$ называется пересечением множеств $$A_\alpha$$, где $$\alpha$$ пробегает множество индексов $$I$$, и обозначается $$C=\bigcap_{\alpha \in I}^{} A_\alpha$$, если оно состоит из всех таких элементов, которые принадлежат каждому множеству $$A_\alpha$$, т.е. \[ x \in C \Longleftrightarrow \forall \alpha \in I: x \in A_\alpha . \]

Операции объединения и пересечения множеств обладают следующими свойствами:

1) коммутативность: \[A \cup B=B \cup A,\quad A \cap B=B \cap A ;\]

2) ассоциативность: \[(A \cup B) \cup C=A \cup(B \cup C),\quad (A \cap B) \cap C=A \cap(B \cap C);\]

3) дистрибутивность: \[A \cup(B \cap C)=(A \cup B) \cap(A \cup C),\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C).\]

  • Определение. Разностью множеств $$A$$ и $$B$$ называется множество $$C$$ (обозначается $$A \backslash B$$ ), состоящее из элементов множества $$A$$, не принадлежащих множеству $$B$$.
  • Определение. Симметрической разностью множеств $$A$$ и $$B$$ называется множество $$A \Delta B=$$ $$(A \backslash B) \cup(B \backslash A)$$.

Ключевые инструменты

  • Определение. Непустая система множеств $$K$$ называется кольцом, если для любых $$A,\ B \in K$$:

\[1) A \Delta B \in K,\]

\[2) A \cap B \in K.\]

Так как для любых $$A$$ и $$B$$: $$A \cup B=(A \triangle B) \cup(A \cap B)$$ и $$A \backslash B=A \triangle(A \cap B)$$,то из $$A, B \in K$$ вытекает также принадлежность к $$K$$ множеств $$A \cup B$$ и $$A \backslash B$$.

Таким образом, кольцо множеств есть система множеств, замкнутая относительно операций пересечения и симметрической разности. Кольцо замкнуто и по отношению к образованию любых конечных сумм и пересечений вида \[ C=\bigcup_{k=1}^n A_k, \quad D=\bigcap_{k=1}^n A_k \]

Любое кольцо содержит пустое множество $$\varnothing$$, так как $$A \backslash A=\varnothing$$. Система, состоящая только из пустого множества, представляет собой наименьшее возможное кольцо множеств.

  • Определение. Множество $$E$$ называется единицей системы множеств $$S$$, если оно принадлежит $$S$$ и если для любого $$A \in S$$ имеет место равенство:

\[ A \cap E=A. \]

Таким образом, единица системы множеств $$S$$ есть не что иное, как максимальное множество этой системы, содержащее все другие входящие в $$S$$ множества.

  • Определение. Минимальным кольцом $$K(S)$$ называется кольцо $$K$$, которое содержится в любом кольце, содержащем $$S$$.

Рассмотрим все кольца, содержащие $$S$$. Такие кольца существуют; примером может служить множество всех подмножеств $$S$$. Возьмем теперь пересечение всех таких колец. Легко видеть, что это и будет минимальное кольцо $$K(S)$$. Таким образом, минимальное кольцо существует. В общем случае, описание кольца может быть трудной задачей, поэтому мы рассмотрим понятие полукольца.

  • Определение. Система множеств $$S$$ называется полукольцом, если:

$$1) \varnothing \in S;$$

$$2) \forall A \in S, \forall B \in S: A \cap B \in S;$$

$$3) \forall A \in S, \forall A_1 \in S, A_1 \subset A, \exists n \in \mathbb{N}, \exists A_2, \ldots A_n \in S: A_1 \sqcup A_2 \sqcup \ldots \sqcup A_n=A.$$

  • Замечание. Не всякое кольцо (или полукольцо) множеств содержит единицу. Примеры:

а) семейство всех конечных подмножеств бесконечного множества;

б) семейство всех ограниченных подмножеств числовой прямой (или плоскости);

в) множество всех промежутков с рациональными концами, содержащихся в отрезке $$[0; \pi].$$

  • Определение. Кольцо $$K$$ называется $$\sigma$$-кольцом, если для любой последовательности множеств $$\left\{A_n\right\}_{n=1}^{\infty}, A_n \in K$$ объединение $$\cup_{n=1}^{\infty} A_n$$ также содержится в $$K$$.
  • Определение. Кольцо $$K$$ называется $$\delta$$-кольцом, если для любой последовательности множеств $$\left\{A_n\right\}_{n=1}^{\infty}, A_n \in K$$ пересечение $$\cap_{n=1}^{\infty} A_n$$ также содержится в $$K$$.
  • Определение. Кольцо множеств с единицей называется алгеброй, $$\sigma$$-кольцо множеств с единицей называется $$\sigma$$-алгеброй, $$\delta$$-кольцо множеств с единицей называется $$\delta$$-алгеброй.

Примеры

1. Для любого множества $$A$$ система всех его подмножеств представляет собой алгебру множеств с единицей $$E=A$$.

2. Для любого непустого множества $$A$$ система, состоящая из множества $$A$$ и пустого множества $$\varnothing$$, образует алгебру множеств с единицей $$E=A$$.

3. Система всех конечных подмножеств произвольного множества $$A$$ представляет собой кольцо множеств. Это кольцо будет алгеброй в том и только том случае, когда множество $$A$$ конечно.