Логистическое уравнение и его свойства: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 78: Строка 78:
  
 
Это уравнение можно получить, используя явную схему дискретизации для логистического уравнения, т.е. заменяя производную по времени на разность
 
Это уравнение можно получить, используя явную схему дискретизации для логистического уравнения, т.е. заменяя производную по времени на разность
$$ \dot N = \frac{\Delta N}{\Delta t} $$, где $$ \Delta N = N(t + \Delta t) - N (t). kfyjpe то из непрерывного варианта получим  
+
$$ \dot N = \frac{\Delta N}{\Delta t} $$, где $$ \Delta N = N(t + \Delta t) - N (t)$$ . Если мы положим $$ \Delta t = 1 $$, то из непрерывного варианта получим  
  
 
\[ N(t+1) = N(t) + r N(t) \left( 1 - \dfrac{N_t}{K} \right) , \]
 
\[ N(t+1) = N(t) + r N(t) \left( 1 - \dfrac{N_t}{K} \right) , \]

Версия 01:26, 15 декабря 2023

Логистическое уравнение - уравнение, описывающее численность изолированной популяции в момент времени $$t$$ и имеющее вид

\[ \dfrac{dN}{dt} = rN \left( 1 - \dfrac{N}{K} \right) , \]

где $$r, K$$ - положительные параметры модели.

История возникновения

Пусть $$ N(t) $$ — численность изолированной популяции в момент времени $$ t $$. Скорость её изменения может быть представлена в следующем виде

\[ \dot N = \text{рождаемость} - \text{смертность} + \text{миграция} . \]

Вид различных членов в правой части этого уравнения зависит от конкретных условий существования популяций и присущих ей свойств. В простейшем случае предполагается отсутствие миграции, а члены рождаемости и смертности пропорциональны общей численности популяции $$ N $$:

\[ \dot N = bN - cN, \ \ \ \ \ \ \ \Rightarrow \ \ \ \ \ \ \ \dot N = aN, \ a = b - c .\]

Поскольку в действительности наблюдаются стабильные популяции, то необходимо рассматривать математические модели, в которых плотность популяции играет регулирующую роль. Очевидно, что коэффициент размножения в такой модели должен быть не постоянным, а зависящим от численности или плотности. Более точно, математическая модель роста замкнутой популяции имеет вид

\[ \dot N = N \cdot f(N) , \]

где $$ f(N) $$ — коэффициент скорости роста популяции. Разложим $$ F(N) $$ в ряд Тейлора в окрестности нуля и отбросим все члены, кроме первых двух. Получим

\[ \dot N = N(a + bN), \]

где $$ a,b $$ — некоторые постоянные, причем естественно предположить, что $$ a > 0, \ b < 0 $$. Именно таким образом Альфред Лотка пришел к уравнению, которое стало известно как логистическое уравнение, которое после некоторых переобозначений запишется в виде:

\[ \dot N = rN \left( 1 - \dfrac{N}{K} \right) . \]

Здесь $$ r $$ и $$K$$ — положительные параметры.

Свойства

Можно заметить, что когда $$ N(t) $$ мало, то $$ \dot N \approx rN $$. Значит, $$N$$ экспоненциально растёт. Параметр $$ K $$ интерпретируется как потенциальная емкость экологической системы, которая определяется доступным наличным количеством ресурсов. Величина $$ K $$ определяет предельное значение численности популяции. Для доказательства этого факта решим логистическое уравнение:

\[ \dfrac{dN}{dt} = rN \left( 1 - \dfrac{N}{K} \right), \]

\[ -\dfrac{1}{r} \int \dfrac{dN}{\frac{N^2}{K} - N} = \int dt , \]

\[ -\dfrac{1}{r} \int \dfrac{dN}{ \left( \frac{N}{\sqrt{K}} - \frac{1}{2} \sqrt{k} \right)^2 - \frac{1}{4}k} = \int dt . \]

Сделаем замену в правой части равенства: $$ z = \frac{N}{\sqrt{K}} - \frac{1}{2} \sqrt{k}, \ dz = \frac{dN}{\sqrt{k}} $$. Получим

\[ - \dfrac{\sqrt{K}}{r} \int \dfrac{dz}{z^2 - \frac{1}{4} k} = \int dt , \]

\[ -\dfrac{1}{r} \ln{ \left| \dfrac{z - \frac{1}{2} \sqrt{k} }{z + \frac{1}{2} \sqrt{k}} \right| } = t + C , \]

\[ \dfrac{z - \frac{1}{2} \sqrt{k} }{z + \frac{1}{2} \sqrt{k}} = Ce^{-rt} . \]

Возвращаясь к N, получим

\[ 1 - \dfrac{K}{N} = C e^{-rt} ,\] \[ N = \dfrac{K}{1 - Ce^{-rt}}. \]

Найдем $$ C $$ из начального условия $$ N(0) = N_0: \ C = 1 - \frac{K}{N_0}. $$ Окончательно получим

\[ N(t) = \dfrac{K}{1 - \left( 1 - \frac{K}{N_0} \right) e^{-rt} } = \dfrac{K e^{rt} }{e^{rt} - 1 + \frac{K}{N_0}} = \dfrac{N_0 K e^{rt}}{N_0 (e^{rt} - 1) + K} . \]

Это решение для $$ 0 < N_0 < K $$ представляет собой сигмоидальную кривую, которая также часто называют логистической кривой

Таким образом, $$ N(t) \rightarrow K$$ при $$ t \rightarrow +\infty $$. Тем самым, величина $$ K$$ определяет финальное состояние численности популяции.

Очевидно, что логистическое уравнение не следует воспринимать буквально как уравнение, управляющее популяционной динамикой реальных систем (например, критику логистического закона роста можно найти в статье автора классического учебника по теории вероятностей В. Феллера [3]). Наиболее правильным представляется использование логистического уравнения как самой простой и удобной формы описания популяции, численность которой стремится к некоторой конечной фиксированной величине. Логистическое уравнение — это первое приближение к описанию численности популяции с плотностно-зависимым регуляторным механизмом, на динамику которой влияют эффекты перенаселения и ограниченности ресурсов. Существенным недостатком модели является тот факт, что предельная численность популяции вводится в качестве известного параметра, в то время как отыскание этой величины нередко является основной задачей исследования.

Проиллюстрируем поведение $$N(t)$$ при $$ N(0) < K, \ N(0) = K, \ N(0) > K $$.

Логист

Мы получили, что функция $$N(t)$$ монотонно сходится к параметру $$K$$ при стремлении времени к бесконечности.

Дискретная система с дискретным временем

Рассмотрим теперь дискретный вариант логистического уравнения, которое имеет вид

\[ N_{t+1} = r N_t \left( 1 - \dfrac{N_t}{K} \right) , \ \ \ r, K > 0 . \]

Это уравнение можно получить, используя явную схему дискретизации для логистического уравнения, т.е. заменяя производную по времени на разность $$ \dot N = \frac{\Delta N}{\Delta t} $$, где $$ \Delta N = N(t + \Delta t) - N (t)$$ . Если мы положим $$ \Delta t = 1 $$, то из непрерывного варианта получим

\[ N(t+1) = N(t) + r N(t) \left( 1 - \dfrac{N_t}{K} \right) , \]

от которого с помощью очевидных переобозначений можно перейти к дискретным логистическим уравнением.

Список литературы

1. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии 2011.

2. Абрамова В.В. Лекции по курсу "Динамические системы и биоматематика", 2023.

3. Feller W. On the Logistic Law of Growth and Its Empirical Verification in Biology, Acta Biotheoretica, 5, 1940, 51–65.