Абстрактная задача нелинейного программирования: различия между версиями
Alnur (обсуждение | вклад) |
Alnur (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
Класс задач нелинейного программирования шире класса задач линейного программирования. Подробное изучение практических задач, которые условились считать линейными, показывает, что они в действительности являются нелинейными. Существующие методы позволяют решать узкий класс задач, ограничения которых имеют вид | Класс задач нелинейного программирования шире класса задач линейного программирования. Подробное изучение практических задач, которые условились считать линейными, показывает, что они в действительности являются нелинейными. Существующие методы позволяют решать узкий класс задач, ограничения которых имеют вид | ||
− | <math> g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}(i=1, m) </math> | + | <math> g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}(i=1, m) </math>, а целевая функция является сепарабельной (суммой <math>n</math> функций <math>\varphi_{j}\left(x_{j}\right)</math>, , или квадратической. |
+ | |||
+ | Даже если область допустимых решений – выпуклая, то в ряде задач целевая функция может иметь несколько локальных экстремумов. С помощью большинства же вычислительных методов можно найти точку локального оптимума, но нельзя установить, является ли она точкой глобального (абсолютного) оптимума или нет. Если задача содержит нелинейные ограничения, то область допустимых решений не является выпуклой и кроме глобального оптимума могут существовать точки локального оптимума. | ||
== МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА == | == МЕТОД МНОЖИТЕЛЕЙ ЛАГРАНЖА == |
Версия 22:43, 28 ноября 2021
ОБЩАЯ ЗАДАЧА НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
В общем виде задача нелинейного программирования состоит в определении максимального (минимального) значения функции \(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) при условии
\( \left.\begin{array}{l} g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b_{i}, i=\overline{1, k}, \\ g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b_{i}, i=\overline{k+1, m}, \end{array}\right\} \)
где \( f \) и \( g_{i} \) – некоторые известные функции n переменных, а \( b_{i}\) – заданные числа.
Класс задач нелинейного программирования шире класса задач линейного программирования. Подробное изучение практических задач, которые условились считать линейными, показывает, что они в действительности являются нелинейными. Существующие методы позволяют решать узкий класс задач, ограничения которых имеют вид
\( g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}(i=1, m) \), а целевая функция является сепарабельной (суммой \(n\) функций \(\varphi_{j}\left(x_{j}\right)\), , или квадратической.
Даже если область допустимых решений – выпуклая, то в ряде задач целевая функция может иметь несколько локальных экстремумов. С помощью большинства же вычислительных методов можно найти точку локального оптимума, но нельзя установить, является ли она точкой глобального (абсолютного) оптимума или нет. Если задача содержит нелинейные ограничения, то область допустимых решений не является выпуклой и кроме глобального оптимума могут существовать точки локального оптимума.