Линейный оператор в банаховых пространствах: различия между версиями
Перейти к навигации
Перейти к поиску
Konst23 (обсуждение | вклад) |
Konst23 (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
'''Определение 4'''. Последовательность $$\left\{x_n\right\}$$ называется '''сходящейся''' к пределу $$x \in M$$, если | '''Определение 4'''. Последовательность $$\left\{x_n\right\}$$ называется '''сходящейся''' к пределу $$x \in M$$, если | ||
− | X,Y [https://sawiki.cs.msu.ru//index.php/%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE нормир. пр-ва.] | + | X,Y~--[https://sawiki.cs.msu.ru//index.php/%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE нормир. пр-ва.] |
Версия 09:51, 23 ноября 2024
Отображения. Теорема Банаха-Штейнгауза
- Введем аналогичные метрическому пространству понятия для нормированных пространств.
Определение 4. Последовательность $$\left\{x_n\right\}$$ называется сходящейся к пределу $$x \in M$$, если X,Y~--нормир. пр-ва.