Линейный оператор в банаховых пространствах: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 4: Строка 4:
  
 
'''Определение 4'''. Последовательность $$\left\{x_n\right\}$$ называется '''сходящейся''' к пределу $$x \in M$$, если
 
'''Определение 4'''. Последовательность $$\left\{x_n\right\}$$ называется '''сходящейся''' к пределу $$x \in M$$, если
X,Y [https://sawiki.cs.msu.ru//index.php/%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE нормир. пр-ва.]
+
X,Y~--[https://sawiki.cs.msu.ru//index.php/%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE нормир. пр-ва.]

Версия 09:51, 23 ноября 2024

Отображения. Теорема Банаха-Штейнгауза

  1. Введем аналогичные метрическому пространству понятия для нормированных пространств.

Определение 4. Последовательность $$\left\{x_n\right\}$$ называется сходящейся к пределу $$x \in M$$, если X,Y~--нормир. пр-ва.