Линейный оператор в банаховых пространствах: различия между версиями
Konst23 (обсуждение | вклад) |
Konst23 (обсуждение | вклад) |
||
Строка 351: | Строка 351: | ||
Пусть $$X, Y$$ - банаховы, оператор $$A: X\rightarrow Y$$ - взаимно-однозначный и ограничен, определённый на всём $$X: D(A) = X, R(A) = Y.$$ Тогда $$A$$ обратим. | Пусть $$X, Y$$ - банаховы, оператор $$A: X\rightarrow Y$$ - взаимно-однозначный и ограничен, определённый на всём $$X: D(A) = X, R(A) = Y.$$ Тогда $$A$$ обратим. | ||
− | ''Доказательство'': $$R(A) = Y \Rightarrow A^{-1}_{п}$$ Ker A =\left\{0\right\} \ | + | ''Доказательство'': $$R(A) = Y \Rightarrow \exists A^{-1}_{п},$$ а Ker A =\left\{0\right\} \Rightarrow \exists A^{-1}_{л},$$ поэтому существует $$A^{-1}.$$ |
+ | Рассмотрим $$\beta = A^{-1}, \beta: Y\rightarrow X.$$ | ||
+ | |||
+ | По лемме $$\exists Y_{n_0}:\, \overline{Y_{n_0}} = Y.$$ | ||
+ | |||
+ | Рассмотрим $$\forall y\in Y,\, y\neq0,\, ||y|| = l>0$$ | ||
+ | |||
+ | \begin{align*} | ||
+ | \exists y_1\in Y_{n_0}:\, ||y-y_1||\leq\frac{l}{2} \Rightarrow ||y_1||\leq2\cdot l | ||
+ | \end{align*} | ||
+ | |||
+ | \begin{align*} | ||
+ | \exists y_2\in Y_{n_0}:\, ||y-y_1-y_2||\leq\frac{l}{4} \Rightarrow ||y_2||\leq \cdot l | ||
+ | \end{align*} | ||
+ | \begin{align*} | ||
+ | ... | ||
+ | \end{align*} | ||
+ | \begin{align*} | ||
+ | \text{Имеем } \left\{y_n\right\}: y_n\in Y_{n_0}:\, ||y-(y_1+y_2+...+y_n)||\leq\frac{l}{2^n} \Rightarrow ||y_n||\leq\frac{l}{2^{n-1}} \Rightarrow y_1+y_2+...+y_n=y | ||
+ | \end{align*} | ||
+ | Положим $$x_n=\betay_n:\, ||x_n||=||\beta y_n||\leq n_0\cdot||y_n||\leq\frac{n_0\cdot l}{2^{n-2}} \Rightarrow \text{ ряд } x_1+x_2+... \text{ сходится} |
Версия 20:27, 24 ноября 2024
Отображения. Теорема Банаха-Штейнгауза.
Пусть $$X,$$ $$Y$$ - нормированные пространства. Рассмотрим $$A: X \rightarrow Y$$ - отображение.
Определение 1. Отображение $$A$$ называется непрерывным в т. $$x_0\in X,$$ если $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n\rightarrow x_0$$ имеет место $$Ax_n\rightarrow Ax_0.$$
Лемма. Если $$A$$ - линейное отображение, которое непрерывно хотя бы в одной точке, то $$A$$ непрерывно всюду.
Доказательство:
Пусть $$A$$ непрерывно в точке $$x_0.$$ Фиксируем произвольную точку $$x\in X$$ и $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n \rightarrow x_0.$$
Рассмотрим последовательность $$\left\{y_n\right\}:$$ $$y_n=x_n-x+x_0.$$ \begin{align*} y_n \rightarrow x_0 \Rightarrow Ay_n = A(x_n-x)+Ax_0=\underbrace{Ax_n-Ax}_{\rightarrow\,0}+Ax_0\rightarrow Ax_0. \end{align*}$$~~\blacksquare$$
Пример.
Пусть пространства $$X, Y = C[0,1],$$ а оператор $$A = \frac{d}{dt},$$ тогда область определения оператора $$D(A) = C^1[0,1].$$
Рассмотрим последовательность $$x_n(t) = \frac{\sin nt}{\sqrt{n}}\rightarrow0,$$ но $$Ax_n(t)=\sqrt{n}\cos nt\nrightarrow 0.$$ Показали, что оператор не является непрерывным.
Определение 2. Отображение $$A$$ называется ограниченным, если оно любое ограниченное множество переводит в ограниченное множество.
Определение 3. Норму ограниченного отображения $$A:$$ $$X\rightarrow Y$$ введём, как $$||A||=\underset{||x||\leq1}{\sup}||Ax||.$$
Замечание 1. Если $$A$$ - линейное, то $$||A||=\underset{x\neq0}{\sup}\frac{||Ax||}{||x||}=\underset{||x||=1}{\sup} ||Ax||.$$
Замечание 2. $$||Ax||\leq||A||\cdot||x||.$$
Определение 4. $$L(X,Y)$$ - линейное пространство линейных ограниченных операторов (отображений), действующих из $$X$$ в $$Y$$.
Теорема 1. Линейный оператор непрерывен $$\Leftrightarrow$$ ограничен.
Доказательство:
1. (Ограниченность $$\Rightarrow$$ Непрерывность)
\begin{align*}
||Ax_n-Ax|| = ||A(x_n-x)|| \leq ||A||\cdot||x_n-x||.
\end{align*}
2. (Непрерывность $$\Rightarrow$$ Ограниченность)
От противного.
Пусть $$\exists\left\{x_n\right\}:$$ $$||x_n||\leq1,\,$$ $$||Ax_n||\rightarrow+\infty,$$ тогда рассмотрим
$$y_n = \frac{x_n}{\sqrt{||Ax_n||}}:$$
\begin{align*}||y_n|| = \frac{||x_n||}{\sqrt{||Ax_n||}}\rightarrow0\Rightarrow y_n\rightarrow0.\end{align*}
\begin{align*}||Ay_n|| = \frac{||Ax_n||}{\sqrt{||Ax_n||}} = \sqrt{||Ax_n||}\rightarrow +\infty \text{ - противоречие с непрерывностью оператора.}\end{align*}
$$~~\blacksquare$$
Теорема 2. Если $$Y$$ - банахово, то $$L(X,Y)$$ - тоже банахово.
Доказательство:
Рассмотрим фундаментальную последовательность $$\left\{A_n\right\},$$ $$A_n\in L(X,Y):$$
\begin{align*}||A_n-A_m||\underset{n,m\rightarrow\infty}{\rightarrow}0.\end{align*}
Для любых ограниченных $$x\in X$$ посл-ть $$\left\{A_nx\right\}$$ - фундаментальная: $$||A_nx-A_mx||\leq||A_n-A_m||\cdot||x||\underset{n,m\rightarrow\infty}{\rightarrow}0.$$
Следовательно фунадментальна и последовательность $$\left\{A_nx\right\},$$ поэтому в силу полноты $$Y$$ $$\exists$$ $$\underset{n\rightarrow \infty}{\lim} A_n x = Ax.$$
Покажем, что $$A\in L(X,Y):$$ \begin{align*} ||A_nx-A_mx||\leq\varepsilon\cdot||x||\Rightarrow \left\{\text{ При } m\rightarrow\infty\right\}\Rightarrow ||A_nx-Ax||\leq\varepsilon\cdot||x|| \end{align*} \begin{align*} ||A_n-A||\leq\varepsilon \Rightarrow \left\{A_n\rightarrow A\right\} \Rightarrow A \text{ - ограниченный.} \end{align*}
$$~~\blacksquare$$
Определение 5. Множество $$E,$$ $$E\subset M $$ называется нигде не плотным, если замыкание $$E$$ не содержит ни одного шара.
Определение 6. Множество называют множеством $$1$$-ой категории, если его можно представить в виде счётного объединения нигде не плотных множеств. Остальные множества - множества $$2$$-ой категории.
Теорема Банаха-Штейнгауза.
Пусть $$X, Y$$ - линейные нормированные пространства. Последовательность $$\left\{A_n\right\},$$ $$A_n\in L(X,Y).$$
Множество $$E=\left\{x\in X| \underset{n \rightarrow \infty}{\overline{\lim}}||A_nx||<+\infty\right\}$$ - множество $$2$$-ой категории.
Тогда последовательность $$\left\{A_n\right\}$$ ограничена, т.е. $$\exists M>0:$$ $$||A_n||\leq M.$$
Доказательство:
Рассмотрим $$F_{nm}=\left\{x\in X|\,||A_n x||\leq m\right\}$$ - замкнутые множества. $$F_m = \underset{n=1}{\overset{\infty}{\cap}}F_{nm}.$$
Покажем, что $$E = \underset{m=1}{\overset{\infty}{\cup}}F_m:$$
\begin{align*} \text{Пусть } x\in E \Rightarrow \exists \, m: ||A_nx||\leq m\Rightarrow x \in F_{nm}, \,n=1,2,... \Rightarrow x\in F_m \Rightarrow x\in \underset{m=1}{\overset{\infty}{\cup}}F_m. \end{align*} \begin{align*} \text{Пусть }x\in \underset{m=1}{\overset{\infty}{\cup}}F_m \Rightarrow \exists \, m: x\in F_m \Rightarrow x\in F_{nm}, \,n=1,2,... \Rightarrow ||A_nx||\leq m\Rightarrow x\in E. \end{align*}
$$E$$ - множество $$2$$-ой категории $$\Rightarrow \exists\,m:$$ $$F_m$$ не является нигде не плотным, то есть $$\exists:\, B(x_0, r)\subseteq F_m, \, r>0.$$
Рассмотрим $$\forall\,x\in X,\, x\neq0;$$ \begin{align*} z = x_0 + \frac{r}{2}\cdot\frac{x}{||x||}\in B(x_0, r)\Rightarrow z\in F_m\Rightarrow ||A_nz||\leq m. \end{align*} \begin{align*} A_n z = A_n x_0 + \frac{r}{2}\cdot\frac{A_nx}{||x||} \Rightarrow ||A_n z|| \geq \frac{r}{2||x||}\cdot ||A_nx|| - ||A_nx_0||\geq \frac{r}{2}\cdot ||A_nx|| - m \end{align*} \begin{align*} \frac{r}{2}\cdot||A_nx||\leq m + ||A_nz|| \leq 2m \end{align*} \begin{align*} ||A_nx||\leq \frac{4m}{r}\cdot||x||\Rightarrow ||A_n||\leq \frac{4m}{r}. \end{align*}
$$~~\blacksquare$$
Следствие Если $$X, Y$$ - линейные нормированные пространства, причём $$X$$ - банахово, $$A_n\in L(X,Y),$$ $$n = 1,2,...$$ и $$\underset{n\rightarrow\infty}{\overline{\lim}}||A_nx||<\infty,$$ $$\forall\, x\in X.$$
Тогда последовательность $$\left\{A_n\right\}$$ - ограничена.
Доказательство: Вытекает их Теоремы Бэра (Что полное метрическое пространство - множество $$2$$-ой категории).
Лемма. Рассмотрим пространство $$C[a,b]$$ и интегральный оператор $$A(x(t)) = \int_{a}^{b}\phi(t)\cdot x(t)dt, \, x(t)\in C[a,b].$$
Пусть $$\phi(t)\in L[a,b]\Rightarrow ||A||=\int_a^b |\phi(t)|dt.$$
Доказательство: \begin{align*} ||Ax(t)||_R\leq\int_a^b|\phi(t)|\cdot|x(t)|dt\leq ||x(t)||_{C[a,b]}\cdot\int_a^b|\phi(t)|dt\Rightarrow \frac{||Ax||}{||x||}\leq\int_a^b|\phi(t)|dt\Rightarrow ||A||\leq\int_a^b|\phi(t)|dt. \end{align*}
Рассмотрим $$(sgn \,\phi)_\rho (t):= \int_{-\infty}^{+\infty} sgn\,\phi(t+s)\cdot\omega_\rho(s)ds,\,$$ где $$\,\int_{-\infty}^{\infty} \omega_\rho(s)ds = 1.$$ Тогда $$|(sgn \,\phi)_\rho|\leq \int_{-\infty}^{\infty} \omega_\rho(s)ds = 1.$$
\begin{align*} A\big((sgn \,\phi)_\rho(t)\big) = \int_a^b \phi(t)\cdot\big(sgn \,\phi)_\rho\big)dt\underset{\rho\rightarrow0}{\rightarrow}\int_a^b|\phi(t)|dt. \end{align*}
$$~~\blacksquare$$
Пример.
Рассмотрим $$f\in C[-\pi,\pi].$$ Покажем, что $$\exists\, f:\, S_n(0, f)\rightarrow +\infty.$$
Пусть $$S_n(x, f)$$ - это $$n$$-ая част. сумма ряда Фурье для $$f$$ в т. $$x:$$ \begin{align*} S_n(x, f) = \frac{1}{\pi}\cdot\int_{-\pi}^{\pi}f(x+t)\cdot\frac{\sin(n+\tfrac{1}{2})t}{2\cdot \sin\tfrac{t}{2}}dt. \end{align*} В точке $$x = 0:$$ \begin{align*} S_n(0, f) = \frac{1}{\pi}\cdot\int_{-\pi}^{\pi}f(t)\cdot\frac{\sin(n+\tfrac{1}{2})t}{2\cdot \sin\tfrac{t}{2}}dt = A_n(f) \end{align*} Докажем, что $$||A_n||\rightarrow+\infty.$$ По лемме: \begin{align*} ||A_n|| = \frac{1}{\pi}\cdot\int_{-\pi}^{\pi}\frac{|\sin(n+\tfrac{1}{2})t|}{|2\cdot \sin\tfrac{t}{2}|}dt \geq \frac{2}{\pi}\cdot\int_{0}^{\pi}\frac{|\sin(n+\tfrac{1}{2})t|}{t}dt \geq \frac{2}{\pi}\cdot\int_{0}^{\pi}\frac{\sin^2(n+\tfrac{1}{2})t}{t}dt = \frac{1}{\pi}\cdot\int_{0}^{\pi}\frac{1-\cos(2n+1)t}{t}dt = \end{align*} \begin{align*} = \frac{1}{\pi}\cdot\int_{0}^{\pi(2n+1)}\frac{1-\cos s}{s}ds = \underbrace{\frac{1}{\pi}\cdot\int_{0}^{1}\frac{1-\cos s}{s}ds}_{const} + \underbrace{\frac{1}{\pi}\cdot\int_{1}^{\pi(2n+1)}\frac{1}{s}ds}_{\frac{1}{\pi}\cdot\ln\pi(2n+1)} - \underbrace{\frac{1}{\pi}\cdot\int_{1}^{\pi(2n+1)}\frac{\cos s}{s}ds}_{const}\rightarrow +\infty. \end{align*}
Обратные операторы. Теорема Банаха об обратном операторе.
Пусть $$X, \,Y$$ - линейные пространства. Рассмотрим оператор $$A:X\rightarrow Y.$$
Определение 7. Оператор $$A^{-1}_{л}:\, Y\rightarrow X$$ называется левым обратным оператором к $$A,$$ если $$A^{-1}_{л}A=E.$$
Определение 8. Оператор $$A^{-1}_{п}:\, Y\rightarrow X$$ называется правым обратным оператором к $$A,$$ если $$AA^{-1}_{п}=E.$$
Теорема. Если $$\exists \, A^{-1}_{л}$$ и $$\exists \, A^{-1}_{п},$$ то $$A^{-1}_{л} = A^{-1}_{п}.$$
Доказательство:
$$A^{-1}_{л}A=E$$ и $$AA^{-1}_{п}=E.$$
\begin{align*}
A^{-1}_{л} = A^{-1}_{п}\cdot E = A^{-1}_{л} \cdot (A\cdot A^{-1}_{п}) = (A^{-1}_{л}\cdot A) \cdot A^{-1}_{п} = E \cdot A^{-1}_{п} = A^{-1}_{п}.
\end{align*}
$$~~\blacksquare$$
Определение 9. Оператор $$A^{-1}: Y\rightarrow X$$ называется обратным оператором к $$A,$$ если $$\exists \,A^{-1}_{л}$$ $$\exists\,A^{-1}_{п}$$ и $$A^{-1}_{л}=A^{-1}_{п}$$, тогда $$A^{-1}:=A^{-1}_{л}=A^{-1}_{п}.$$
Теорема. Следующие утверждения эквиваленты:
1. $$\exists \,A^{-1}_{л}.$$
2. Eсли уравнение $$Ax = y$$ имеет решение, то это решение единственно.
3. Ядро оператора состоит из нулевого вектора: $$Ker A = \left\{0\right\}.$$
Доказательство:
$$2\Rightarrow3.$$ Если $$x_0\in Ker A,$$ то $$x$$ и $$x + x_0$$ - решения $$Ax = y.$$
$$1\Rightarrow2.$$ Если $$\exists \, A^{-1}_{л},$$ то $$Ax = y$$ и $$A^{-1}_{л}Ax = A^{-1}_{л}y,$$ поэтому $$x=A^{-1}_{л}y.$$
$$3\Rightarrow1.$$ Пусть $$R(A)$$ - область значения оператора, тогда для $$y\in R(A)$$ $$\exists\, x:\, Ax=y,$$ поэтому $$x=A^{-1}_{л}y.$$
$$~~\blacksquare$$
Замечание. Следующие утверждения аналогично эквиваленты:
1. $$R(A) = Y.$$
2. Уравнение $$Ax = y$$ всегда разрешимо.
3. $$\exists \,A^{-1}_{п}.$$
Пример.
Пусть $$X = C^1[0,1],$$ $$Y = C[0,1],$$ а оператор $$A = \frac{d}{dt}.$$
\begin{align*} Ax = y \Rightarrow \dot{x} = y \end{align*} \begin{align*} \text{Так как } AA^{-1}_{п}=E, \text{ поэтому }A^{-1}_{п}y(t) = \int_0^t y(\tau)d\tau \Rightarrow A^{-1}_{л}Ax(t) = \int_0^t \dot{x}(\tau)d\tau = x(t) - x(0) \neq x(t) \end{align*} Поэтому $$A^{-1}_{п}\neq A^{-1}_{л}.$$
Определение 10. Оператор $$A: X\rightarrow Y$$ называется обратимым, если уравнение $$Ax = y$$ однозначно разрешимо и решение устойчиво к изменению правой части (т.е. $$A^{-1}$$ $$\exists$$ и ограничен).
Теорема. Пусть $$X$$ - банахово пространство, $$A:\, X\rightarrow Y$$ - ограниченный оператор, $$\overline{R(A)} = Y, \exists\, M>0:\, ||Ax||\geq M||x||,\,\forall\, x\in X.$$ Тогда $$A$$ - обратимый.
Доказательство:
$$||Ax||\geq M||x|| \Rightarrow Ker A=\left\{0\right\}\Rightarrow \exists\, A^{-1}_{л}.$$
Докажем, что $$R(A) = Y.$$
$$\forall\, y\in Y$$ $$\exists\left\{y_n\right\}:\,y_n\in R(A),\, y_n\rightarrow y.$$
$$y_n = A x_n.$$ Рассмотрим $$\left\{x_n\right\}:\, ||x_n-x_m||\leq\frac{1}{M}\cdot||y_n-y_m||.$$ Последовательность $$\left\{x_n\right\}$$ - фундаментальная $$\Rightarrow\exists\, x\in X:\, x_n\rightarrow x.$$
$$Ax_n = y_n \Rightarrow Ax = y \Rightarrow \exists \, A^{-1}_{п}.$$
Корректность: $$||y||\geq M||A^{-1}y||\Rightarrow ||A^{-1}||\leq\frac{1}{M}.$$
$$~~\blacksquare$$
Утверждение.
$$X$$ - банахово, $$A:\,X\rightarrow X,$$ $$||A||<1.$$ Тогда $$E-A$$ обратим.
Доказательство:
\begin{align*}
S_n = E + A + A^2 + ... + A^n
\end{align*}
\begin{align*}
||S_n|| \leq 1 + ||A|| + ||A||^2 + ... + ||A||^n\leq\frac{1}{1-||A||}
\end{align*}
Покажем, что $$S_n$$ - фундаментальная:
\begin{align*}
S_n - S_m = A^{m+1} + A^{m+2} + ... + A^n = A^{m+1}\cdot(E+A+...+A^{n-m-1})
\end{align*}
\begin{align*}
||S_n-S_m||\leq||A^{m+1}||\cdot\frac{1}{1-||A||}
\end{align*}
$$L(X, X)$$ - полно $$\Rightarrow \exists \,S = \underset{n\rightarrow \infty}{\lim} S_n: \,X\rightarrow X.$$
\begin{align*} S_n \cdot (E-A) = (E-A)S_n = E-A^{n+1} \underset{n \rightarrow \infty}{\rightarrow} S = (E-A)^{-1}\Rightarrow ||S||\leq \frac{1}{1-||A||}. \end{align*}
$$~~\blacksquare$$
Следствие.
$$||(E-A)^{-1}||\leq \frac{1}{1-||A||}$$ и $$||(E-A)^{-1} - E||\leq \frac{1}{1-||A||}.$$
Теорема. Пусть $$X$$ - банахово. Оператор $$A: X\rightarrow X$$ - ограничен. Тогда
1. $$\exists R=\underset{n\rightarrow\infty}{\lim}\sqrt[n]{||A^n||}$$.
2. Если $$R<1,$$ то $$E-A$$ обратим.
$$R$$ - спектральный радиус.
Доказательство:
$$S_n = E + A + A^2 + ... + A^n \rightarrow (E-A)^{-1}.$$
\begin{align*}
0\leq\sqrt[n]{||A^n||}\leq \sqrt[n]{||A||^n} = ||A|| \Rightarrow \exists \underset{n\rightarrow\infty}{\lim}\sqrt[n]{||A^n||} = R, \, 0\leq R\leq ||A||.
\end{align*}
$$\forall\, \varepsilon>0\, \exists p\in \mathbb{N}: \, \sqrt[p]{||A^p||}\leq R+\varepsilon.$$
$$\forall\, n\in\mathbb{N}:\, n = mp+q, (0\leq q\leq p-1)$$
\begin{align*} \sqrt[n]{||A||^n} = (||A^n||)^{\frac{1}{n}} = ||A^{mp+q}||^{\frac{1}{mp+q}} = ||(A^p)^m\cdot A^q||^{\frac{1}{mp+q}}\leq ||A^p||^{\frac{m}{mp+q}}\cdot||A^q||^{\frac{1}{mp+q}}\rightarrow||A^p||^{\frac{1}{p}}\leq R+\varepsilon\Rightarrow \sqrt[n]{||A^n||}\leq R+2\varepsilon,\, \forall n\geq n_0 \end{align*}
\begin{align*} \Rightarrow \underset{n\rightarrow}{\overline{\lim}}\sqrt[n]{||A||^n}\leq R+2\varepsilon. \end{align*}
$$~~\blacksquare$$
Теорема. Пусть $$X$$ - банахово. Оператор $$A:\, X\rightarrow Y$$ - обратим. Оператор $$B:\, X\rightarrow Y$$ и $$||A-B||\leq\frac{1}{||A^{-1}||}.$$ Тогда оператор $$B^{-1}$$ - обратим.
Доказательство:
\begin{align*} B = A - (A - B) = A(E-A^{-1}(A-B)) \Rightarrow ||A^{-1}(A-B)||\leq||A^{-1}||\cdot||A-B||\leq1. \end{align*}
$$~~\blacksquare$$
Следствие. Множество обратимых операторов открыто.
Теорема. Пусть $$X$$ - банахово. Оператор $$A: X\rightarrow Y$$ - обратим. Рассмотрим $$A_n: X\rightarrow Y,$$ $$||A_n-A||\rightarrow0.$$ Тогда $$\exists N:\, \forall n>N$$ $$A_n$$ обратим и $$||A^{-1}_n-A^{-1}||\rightarrow0.$$
Доказательство:
Обратимость:
\begin{align*}
A_n = A - (A-A_n) = A(E-A^{-1}(A-A_n))
\end{align*}
\begin{align*}
\exists N:\, \forall n >N:\, A^{-1}_n = (E-A^{-1}(A-A_n))^{-1}\cdot A^{-1}
\end{align*}
\begin{align*}
A^{-1}_n - A^{-1} = (E-A^{-1}(A-A_n))^{-1}\cdot A^{-1} - A^{-1} = ((E-A^{-1}(A-A_n))^{-1}-E)\cdot A^{-1}\Rightarrow
\end{align*}
\begin{align*}
\Rightarrow ||A^{-1}_n - A^{-1}||\leq\left\{||(E-B)^{-1}-E||\leq\frac{||B||}{1-||B||}\right\}\leq \frac{||A^{-1}||\cdot||A-A_n||}{1-||A^{-1}||\cdot||A-A_n||}\cdot ||A^{-1}||\underset{n\rightarrow\infty}{\rightarrow}0.
\end{align*}
$$~~\blacksquare$$
Лемма. Пусть $$X$$ - банахово, $$\beta: X\rightarrow Y,$$ $$X_n=\left\{x\in X\big|\,||\beta x||\leq n||x||\right\}\Rightarrow X = \underset{n=1}{\overset{\infty}{\cup}}X_n$$ и $$\exists\,n_0:$$ $$\overline{X_0}=X.$$
Доказательство:
То, что $$X = \underset{n=1}{\overset{\infty}{\cup}}X_n$$ - очевидно. Покажем, что $$X = \underset{n=1}{\overset{\infty}{\cup}}\overline{X_n}.$$
По теореме Бэра среди $$X_n$$ найдётся множество, содержащее некоторый шар $$B(\widetilde{x}_0, \widetilde{r})\Rightarrow \exists x_0,\, r<\widetilde{r}:\, \overline{B(x_0, r)}\subset \overline{X_n}.$$
Пусть $$||\xi||=r.$$ Покажем, что точки этой сферы можно сколь угодно аппроксимировать точками некоторого $$X_{n_0}.$$
Рассмотрим $$x=x_0+\xi\in \overline{B(x_0, r)}\Rightarrow \exists\left\{x_k\right\}:\, x_k\in B(x_0, r)\cap X_n.$$
Последовательность $$x_k\rightarrow x,$$ $$\xi_k = x_k - x_0 \rightarrow \xi.$$
Покажем, что оператор $$\beta$$ ограничен на последовательности $$\left\{\xi_k\right\}, \, \beta\xi_k = \beta x_k - \beta x_0.$$
\begin{align*} ||\beta\xi_k||\leq||\beta x_k|| + ||\beta x_0||\leq n\cdot||x_k|| + n\cdot||x_0|| = n\cdot||x_0+\xi_k||+n\cdot||x_0||\leq 2n\cdot||x_0||+n\cdot||\xi_k||= \end{align*} \begin{align*} =||\xi_k||\cdot\bigg(2n\cdot\frac{||x_0||}{||\xi_k||}+n\bigg)\leq\left\{\text{Последовательность } \xi_k:\, ||\xi_k||\geq\frac{r}{2}, \text{ начиная с некоторого } k\right\}\leq||\xi_k||\cdot\underbrace{\bigg(\frac{4}{r}\cdot||x_0||+1\bigg)\cdot n}_{<n_0}. \end{align*}
Аппроксимируем $$\forall x\in X,\, x\neq0$$ точками из $$X_{n_0}:$$
\begin{align*} \xi = r\cdot\frac{x}{||x||}, \, ||\xi|| = r\Rightarrow \left\{\xi_k\right\}, \, \xi_k\in X_{n_0}:\, \xi_k\rightarrow\xi \end{align*}
\begin{align*} x_k = \frac{||x||}{r}\cdot \xi_k \in X_{n_0}, \text{ а } x_k\rightarrow x. \end{align*} $$~~\blacksquare$$
Теорема Банаха об обратном операторе. Пусть $$X, Y$$ - банаховы, оператор $$A: X\rightarrow Y$$ - взаимно-однозначный и ограничен, определённый на всём $$X: D(A) = X, R(A) = Y.$$ Тогда $$A$$ обратим.
Доказательство: $$R(A) = Y \Rightarrow \exists A^{-1}_{п},$$ а Ker A =\left\{0\right\} \Rightarrow \exists A^{-1}_{л},$$ поэтому существует $$A^{-1}.$$ Рассмотрим $$\beta = A^{-1}, \beta: Y\rightarrow X.$$ По лемме $$\exists Y_{n_0}:\, \overline{Y_{n_0}} = Y.$$ Рассмотрим $$\forall y\in Y,\, y\neq0,\, ||y|| = l>0$$ \begin{align*} \exists y_1\in Y_{n_0}:\, ||y-y_1||\leq\frac{l}{2} \Rightarrow ||y_1||\leq2\cdot l \end{align*} \begin{align*} \exists y_2\in Y_{n_0}:\, ||y-y_1-y_2||\leq\frac{l}{4} \Rightarrow ||y_2||\leq \cdot l \end{align*} \begin{align*} ... \end{align*} \begin{align*} \text{Имеем } \left\{y_n\right\}: y_n\in Y_{n_0}:\, ||y-(y_1+y_2+...+y_n)||\leq\frac{l}{2^n} \Rightarrow ||y_n||\leq\frac{l}{2^{n-1}} \Rightarrow y_1+y_2+...+y_n=y \end{align*} Положим $$x_n=\betay_n:\, ||x_n||=||\beta y_n||\leq n_0\cdot||y_n||\leq\frac{n_0\cdot l}{2^{n-2}} \Rightarrow \text{ ряд } x_1+x_2+... \text{ сходится}