Многомерная система Лотки-Вольтерры. Теорема об отсутствии циклов: различия между версиями
Строка 5: | Строка 5: | ||
== Система Лотки-Вольттеры в многомерном пространстве. Модель пищевой цепи. == | == Система Лотки-Вольттеры в многомерном пространстве. Модель пищевой цепи. == | ||
− | + | == Система Лотки-Вольттеры при $$n > 2$$. == | |
$$u_1(t), u_2(t), ... u_n(t)$$ -- численности популяций, $$n > 2$$. | $$u_1(t), u_2(t), ... u_n(t)$$ -- численности популяций, $$n > 2$$. |
Версия 20:46, 14 декабря 2024
Содержание
Общая система Лотки-Вольтерры. Теорема об отсутствии в ней предельных циклов.
Система Лотки-Вольттеры в многомерном пространстве. Модель пищевой цепи.
Система Лотки-Вольттеры при $$n > 2$$.
$$u_1(t), u_2(t), ... u_n(t)$$ -- численности популяций, $$n > 2$$.
Общий вид многомерной системы выглядит таким образом:
\begin{equation} \dot{u}_i(t) = u_i(t) \cdot \left(r_i + \sum_{j=1}^n a_{ij} u_j(t) \right), \quad i = 1,2 ... n \end{equation}
Значения коэффициентов прироста популяции $$r_i$$:
- $$r_i > 0$$: $$r_i$$ — коэффициент рождаемости.
- $$r_i < 0$$: $$r_i$$ — коэффициент смертности.
Коэффициенты взаимодействия $$a_{ij}$$:
- $$a_{ii} \leq 0$$: коэффициент внутривидовой конкуренции. При $$a_{ii} = 0$$ внутривидовой конкуренции нет, при $$a_{ii} < 0$$ -- есть.
Коэффициенты взаимодействия $$a_{ij}$$: коэффициент, определяющий взаимодействие $$i$$-го вида с $$j$$-ым:
- $$a_{ij} = 0$$: нет взаимодействия.
- $$a_{ij} < 0$$: $$j$$-й вид негативно влияет на $$i$$-й.
- $$a_{ij} > 0$$: $$i$$-й вид "потребляет" $$j$$-й вид.
Модель пищевой цепи
Если число взаимодействующих популяций больше двух, то анализ моделей Лотки–Вольтерры становится более сложным. Ограничимся ситуацией, когда модель имеет некоторый специальный вид, который облегчает анализ.
Рассмотрим экологическую систему, состоящую из $$n$$ популяций. Первая популяция (вид-автотроф) является жертвой для второй (вид-гетеротроф), которая в свою очередь жертва для третьей и т.д., вплоть до n-ой популяции, которая является хищником по отношению к $$(n-1)$$-у виду. Потоки вещества схематически представлены на следующей диаграмме:
\begin{equation} S_1 \longrightarrow S_2 \longrightarrow \dots \longrightarrow S_n \end{equation}
Такие экологические сообщества называются пищевыми цепями (известно, что в природе существуют пищевые цепи, содержащие до шести видов).
Принимая во внимание внутривидовую конкуренцию, получим следующую систему:
\begin{equation} \begin{aligned} \dot{u}_1 &= u_1(r_1 - a_{11}u_1 - a_{12}u_2), \\ \dot{u}_2 &= u_2(-r_2 + a_{21}u_1 - a_{22}u_2 - a_{23}u_3), \\ &\ \vdots \\ \dot{u}_i &= u_i(-r_i + a_{i,i-1}u_{i-1} - a_{ii}u_i - a_{i,i+1}u_{i+1}), \quad i = 2, \dots, n-1, \\ \dot{u}_n &= u_n(-r_n + a_{n,n-1}u_{n-1} - a_{nn}u_n), \end{aligned} \end{equation}
где все $$r_i, a_{ij} > 0$$. Случай n = 2 представляет собой модель хищник–жертва с учетом внутривидовой конкуренции.
Теорема об устойчивости положения равновесия:
Если система (2) имеет положение равновесия $$p \in \text{int}\,\mathbb{R}^n_+$$, то $$p$$ глобально асимптотически устойчиво. Если $$a_{ii} = 0$$ (отсутствует внутривидовая конкуренция), то положение равновесия $$p$$ устойчиво по Ляпунову.
Доказательство:
Запишем систему (2) в виде $$\dot{u}_i = u_i w_i$$ и рассмотрим функцию
\begin{equation} V(u) = \sum_{i=1}^n c_i (u_i - p_i \ln u_i), \end{equation}
где $$c_i$$ – неотрицательные постоянные, которые будут определены позднее. Вычислим производную $$L_tV$$ вдоль траекторий системы (2):
\begin{equation} L_tV = \sum_{i=1}^n c_i \dot{u}_i \frac{u_i - p_i}{u_i} = \sum_{i=1}^n c_i (u_i - p_i) w_i. \end{equation}
Так как $$p$$ – положение равновесия $$(Ap = r, \; A = \text{матрица взаимодействий, заданная (2)})$$, то
\begin{equation} w_i = r_i - a_{i,i-1}(u_{i-1} - p_{i-1}) - a_{ii}(u_i - p_i) - a_{i,i+1}(u_{i+1} - p_{i+1}). \end{equation}
Введем обозначение $$v_i = u_i - p_i$$. Тогда
\begin{equation} L_tV = -\sum_{i=1}^n c_i a_{ii} v_i^2 + \sum_{i=1}^{n-1} v_i v_{i+1}(-c_i a_{i,i+1} + c_{i+1} a_{i+1,i}). \end{equation}
Поскольку имеется свобода в выборе неотрицательных постоянных $$c_i$$, потребуем выполнения следующего равенства:
\begin{equation} -c_i a_{i,i+1} + c_{i+1} a_{i+1,i} = 0. \end{equation}
Отметим, что все постоянные $$c_i > 0$$. Следовательно, $$L_tV = -\sum_{i=1}^n c_i a_{ii} (u_i - p_i)^2 \leq 0$$, причем $$L_tV = 0$$ только в точке $$p$$.
Исследуем функцию $$V(u)$$. Положение равновесия $$p$$ – единственная критическая точка функции $$V(u)$$, причем
\begin{equation} \frac{\partial V}{\partial u_i}\bigg|_{u=p} = 0, \quad \frac{\partial^2 V}{\partial u_i^2}\bigg|_{u=p} > 0, \quad \frac{\partial^2 V}{\partial u_i \partial u_j}\bigg|_{u=p} = 0, \; i \neq j. \end{equation}
Другими словами, функция $$V(u)$$ выпуклая, с единственной точкой минимума $$p$$. По теореме Ляпунова положение равновесия $$p$$ асимптотически устойчиво и, по крайней мере, представляет собой $$\omega$$-предельное множество для начальных условий из некоторой окрестности $$p$$. С другой стороны функция $$V(u)$$ определена на всем множестве $$\mathbb{R}^n_+$$, множество нулей $$L_tV$$ состоит из единственной точки $$p$$, что означает, что $$p$$ глобально асимптотически устойчива, и все орбиты из $$\text{int}\,\mathbb{R}^n_+$$ к ней сходятся.
Если все $$a_{ii} = 0$$, то $$V(u)$$ — первый интеграл системы (2). Так как траектории системы принадлежат поверхностям уровня $$V(u)$$, то в окрестности $$p$$ они лежат на ограниченных поверхностях $$V(u) = \text{const}$$, что и означает устойчивость по Ляпунову.