Неограниченная продолжаемость решений ОДУ: различия между версиями
Anton (обсуждение | вклад) |
Anton (обсуждение | вклад) |
||
Строка 116: | Строка 116: | ||
Если | Если | ||
\begin{cases} | \begin{cases} | ||
− | |||
\| f(t, x) \| \le k(t) \| x \|, \\ | \| f(t, x) \| \le k(t) \| x \|, \\ | ||
\| x \| \ge r, \\ | \| x \| \ge r, \\ | ||
k(t) \in C(\mathcal{I}_t^{+}), \\ | k(t) \in C(\mathcal{I}_t^{+}), \\ | ||
k(t) \ge 0 \ \forall t \in \mathcal{I}_t^{+} | k(t) \ge 0 \ \forall t \in \mathcal{I}_t^{+} | ||
− | |||
\end{cases} | \end{cases} | ||
Версия 12:56, 30 ноября 2021
Будем рассматривать действительную систему \begin{equation}\label{syst} \frac{dx}{dt} = f(t, x), \end{equation} где \begin{equation*} f(t, x) \in C_{t, x}^{(0, 1)} (\mathcal{I}_t^{+} \times \mathcal{R}_x^n) \Leftrightarrow \begin{cases} f(t, x) \in C_t(\mathcal{I}_t^{+}) \; \forall x \in \mathcal{R}_x^n, \\ f(t, x) \in C_x^1(\mathcal{R}_x^n) \; \forall t \in \mathcal{I}_t^{+}, \end{cases} \end{equation*}
Здесь \begin{equation*} \mathcal{I}_t^{+} = \{ t \ge 0 \}, \\ \mathcal{R}_x^n \subseteq \mathbb{R}^n \end{equation*}
Пусть $$x[t] \equiv x(t; t_0, x_0)$$ - решение (\ref{syst}) с начальным условием \begin{equation}\label{start_cond} x(t_0) = x_0 \end{equation}
Содержание
Основные понятия
Если $$x[t]$$ - решение системы (\ref{syst})-(\ref{start_cond}), то
- $$x[t]$$ неограниченно продолжаемо вправо (defined in the future), если $$x[t]$$ имеет смысл на промежутке $$[t_0, +\infty), \ t_0 \in \mathcal{I}_t^{+}$$,
- $$x[t]$$ имеет конечное время определения (finite escape time), если $$x[t]$$ определено лишь на конечном промежутке $$t_0 \le t < T < +\infty, \ t_0 \in \mathcal{I}_t^{+}$$.
Непродолжаемость вправо решения, имеющего конечное время определения
Лемма 1
Если решение $$x[t]$$ имеет конечное время определения $$t_0 \le t < T < +\infty$$, то $$\|x(t)\| \rightarrow +\infty$$ при $$t \rightarrow T - 0$$.
Доказательство. Пусть $$\|x(t)\| \nrightarrow +\infty \ при \ t \rightarrow T - 0$$. Тогда $$\exists \ t_k \rightarrow T - 0: x(t_k) \rightarrow y \neq \infty \ при \ k \to +\infty $$. Рассмотрим решение $$y[t] \equiv y(t; T, y)$$, которое существует и единственно согласно теореме Коши и определено в некотором интервале $$(T - \alpha, T + \alpha), \ \alpha > 0$$. Тогда при $$t_k > T - \frac{\alpha}{4}$$ имеем \begin{equation*} x(t; t_k, x(t_k)) \equiv x(t; t_0, x_0), \\ y(t; t_k, y(t_k)) \equiv y(t; T, y). \end{equation*}
Т.к. $$x[t_k]$$ может быть выбрано сколь угодно близко к $$y$$ и $$t_k \to T$$, то при достаточно большом $$k$$ точки $$x[t_k], y[t_k]$$ сколько угодно близки между собой. А тогда на основании свойства интегральной непрерывности получим, что решение $$x(t; t_0, x_0)$$ определено, во всяком случае, на промежутке $$(t_k, t_k + \frac{\alpha}{2}) \supset (T, T + \frac{\alpha}{4})$$. А это противоречит максимальности промежутка $$[t_0, T)$$ существования решения $$x(t)$$ при $$t \ge t_0$$. Таким образом, $$\| x[t] \| \to +\infty$$ при $$t \to T - 0. \ \blacksquare$$
Достаточные условия неограниченной продолжаемости вправо
Следствие из леммы 1
Если решение $$x[t] \equiv x(t; t_0, x_0)$$ ограничено в своём максимальном промежутке существования $$t_0 \le t < t_0 + T$$, то оно бесконечно продолжаемо вправо, т.е. $$T = +\infty$$.
Рассмотрим дифференциальное неравнение \begin{equation} \label{diff_ineq} \dot{v} \le G(t, v), \ t \ge t_0, \ t_0 \in \mathcal{I}_t^{+}, \end{equation}
где $$G(t, v)$$ - некоторая непрерывная скалярная функция, определённая при $$t \ge t_0$$ и $$v \in \mathcal{R}^1$$, а $$v = v(t)$$ - непрерывная дифференцируемая положительная скалярная функция.
Будем говорить, что решение $$v(t) \in C^1$$ неравенства (\ref{diff_ineq}) имеет конечное время определения $$t_0 \le t < T$$, если $$\dot{v}(t) \le G(t, v)$$ при $$t_0 \le t < T$$ и $$\| v(t) \| \to +\infty$$ при $$t \to T - 0 $$.
Теорема Ла-Салля
Пусть
- $$S_r^c = \{ \| x \| \ge r \} \subset \mathcal{R}_x^n$$ - внешность сферы радиуса $$r$$,
- $$V(t, x) \in C_{t, x}^{(1, 1)} (\mathcal{I}_t^{+} \times S_r^c)$$,
- $$V(t, x) \rightrightarrows \infty$$ по $$t$$ при $$\| x \| \rightarrow \infty$$, равномерно на каждом конечном промежутке $$(a, b) \subset \mathcal{I}_t^{+}$$.
Тогда, если
$$\ \ \ \ \ 1) \ \frac{\partial V}{\partial t}(t, x)$$ в силу системы (\ref{syst}) при $$t \ge t_0$$ и $$x \in S_r^c$$ удовлетворяет неравенству \begin{equation}\label{diff_ineq_2} \frac{\partial V}{\partial t}(t, x) \le G(t, V(t, x)), \end{equation}
где $$G(t, v)$$ - непрерывная скалярная функция,
$$\ \ \ \ \ 2) $$ соответствующее скалярное неравенство (\ref{diff_ineq}) не имеет положительных решений $$v(t)$$ с конечным временем определения,
то каждое решение $$x = x(t)$$ системы (\ref{syst}) неограниченно продолжимо вправо.
Доказательство. Допустим, что некоторое решение $$x[t]$$ системы (\ref{syst}) имеет конечное время определения $$t_0 \le t < T < \infty$$. Тогда в силу леммы 1 $$\| x(t) \| \to +\infty$$ при $$t \to T - 0$$ и, следовательно, при $$t \in (t_1, T)$$, где $$t_1 > t_0$$, решение $$x(t)$$ целиком будет содержаться в некоторой области $$S_{r_1}^c$$, где $$r_1 > r$$. Кроме того, можно предполагать, что $$V(t, x) > 0$$ при $$(t, x) \in [t_0, T] \times S_{r_1}^c$$. Но тогда на основании неравенства (\ref{diff_ineq_2}) функция $$v(t) = V(t, x(t))$$ является положительным решением скалярного неравенства (\ref{diff_ineq}) с конечным временем определения $$t_0 \le t < T (v(t) = \infty)$$. А это невозможно в силу условия 2 теоремы. $$\blacksquare$$
Достаточные условия того, что неравенство (\ref{diff_ineq}) не имеет положительных решений с конечным временем определения, даёт следующее утверждение.
Следствие из теоремы Ла-Салля
Пусть $$G(t, v) = k(t) L(v)$$, где $$k(t) \ge 0, L(v) > 0$$ - скалярные функции, непрерывные при $$t \ge t_0, t_0 \in \mathcal{I}_t^{+}$$.
Если $$\int\limits_{t_0}^{+\infty} \frac{d v}{L(v)} = +\infty$$,
то неравенство (\ref{diff_ineq}) не имеет положительных решений $$v(t)$$ с конечным временем определения.
Доказательство. Пусть $$\exists \ v(t) > 0, \ t_0 \le t < +\infty$$ неравенства \begin{equation}\label{diff_ineq_3} \frac{d v}{d t} \le k(t) L(v), \end{equation}
такое, что $$\| v(T) \| = +\infty$$. Тогда \begin{equation}\label{diff_ineq_4} \int\limits_{v(t_0)}^{v(t)} \frac{d v}{L(v)} \le \int\limits_{t_0}^{t} k(\tau) d\tau. \end{equation}
Отсюда при $$t \to T - 0$$ получаем, что левая часть неравенства (\ref{diff_ineq_4}) стремится к $$+\infty$$, а правая - ограничена, что невозможно. Следовательно, каждое положительное решение $$v(t)$$ неравенства (\ref{diff_ineq_3})
- или имеет смысл лишь на некотором конечном промежутке $$[t_0, T)$$, причём $$\| v(t) \| \nrightarrow +\infty$$ при $$t \to T - 0$$,
- или же оно определено на бесконечном промежутке $$t_0 \le t < +\infty \ \blacksquare$$.
Пример
Рассмотрим действительную систему \begin{equation}\label{example} \frac{d x}{d t} = f(t, x), \end{equation}
где \begin{equation*} f(t, x) \in C_{t, x}^{(0, 1)}(\mathcal{I}_t^{+} \times \mathcal{R}_x^n). \end{equation*}
Если \begin{cases} \| f(t, x) \| \le k(t) \| x \|, \\ \| x \| \ge r, \\ k(t) \in C(\mathcal{I}_t^{+}), \\ k(t) \ge 0 \ \forall t \in \mathcal{I}_t^{+} \end{cases}
то все решения $$x(t)$$ системы (\ref{example}) неограниченно продолжаемо вправо.
Действительно, пусть \begin{equation*} V(x) = \| x \|^2 \equiv <x, x>. \end{equation*}
Тогда \begin{equation*} \dot{V}(x) = <\frac{d x}{d t}, x> + <x, \frac{d x}{d t}> = 2 x^T f(t, x). \end{equation*}
Используя неравенство Коши, получим \begin{equation*} \dot{V}(x) \le 2 \| x^T \| \| f(t, x) \| \le 2 k(t) V(x) \equiv G(t, V(x)) \end{equation*}
при $$t \ge t_0$$ и $$\| x \| \ge r$$. Но неравенство \begin{equation*} \dot{v}(t) \le 2 k(t) v(t) \end{equation*}
в силу следствия из теоремы Ла-Салля $$(L(v) = 2 v$$ не имеет положительных решений с конечным временем определения . Следовательно, на основании теоремы Ла-Салля каждое решение $$x(t)$$ системы (\ref{example}) имеет смысл при $$t_0 \le t < +\infty$$.