Линейный оператор в банаховых пространствах
Отображения. Теорема Банаха-Штейнгауза
Пусть $$X,$$ $$Y$$ - нормированные пространства. Рассмотрим $$A: X \rightarrow Y$$ - отображение.
Определение 1. Отображение $$A$$ называется непрерывным в т. $$x_0\in X,$$ если $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n\rightarrow x_0$$ имеет место $$Ax_n\rightarrow Ax_0.$$
Лемма. Если $$A$$ - линейное отображение, которое непрерывно хотя бы в одной точке, то $$A$$ непрерывно всюду.
Доказательство:
Пусть $$A$$ непрерывно в точке $$x_0.$$ Фиксируем произвольную точку $$x\in X$$ и $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n \rightarrow x_0.$$
Рассмотрим последовательность $$\left\{y_n\right\}:$$ $$y_n=x_n-x+x_0.$$ \begin{align*} y_n \rightarrow x_0 \Rightarrow Ay_n = A(x_n-x)+Ax_0=\underbrace{Ax_n-Ax}_{\rightarrow\,0}+Ax_0\rightarrow Ax_0. \end{align*}$$~~\blacksquare$$
Пример
Пусть пространства $$X, Y = C[0,1],$$ а оператор $$A = \frac{d}{dt},$$ тогда область определения оператора $$D(A) = C^1[0,1].$$
Рассмотрим последовательность $$x_n(t) = \frac{\sin nt}{\sqrt{n}}\rightarrow0,$$ но $$Ax_n(t)=\sqrt{n}\cos nt\nrightarrow 0.$$ Показали, что оператор не является непрерывным.
Определение 2. Отображение $$A$$ называется ограниченным, если оно лбое ограниченное множество переводит в ограниченное множество.
Определение 3. Норму ограниченного отображения $$A:$$ $$X\rightarrow Y$$ введём, как $$||A||=\underset{||x||\leq1}{\sup}||Ax||.$$
Замечание 1. Если $$A$$ - линейное, то $$||A||=\underset{x\neq0}{\sup}\frac{||Ax||}{||x||}=\underset{||x||=1}{\sup} ||Ax||.$$
Замечание 2. $$||Ax||\leq||A||\cdot||x||.$$
Определение 4. $$L(X,Y)$$ -линейное пространство линейных ограниченных операторов (отображений), действующих из $$X$$ в $$Y$$.
Теорема 1. Линейный оператор непрерывен $$\Leftrightarrow$$ ограничен.
Доказательство:
1. (Ограничен $$\Rightarrow$$ Непрерывен)
\begin{align*}
||Ax_n-Ax|| = ||A(x_n-x)|| \leq ||A||\cdot||x_n-x||.
\end{align*}
2. (Непрерывен $$\Rightarrow$$ Ограничен)
От противного.
Пусть $$\exists\left\{x_n\right\}:$$ $$||x_n||\leq1,\,$$ $$||Ax_n||\rightarrow+\infty,$$ тогда рассмотрим
$$y_n = \frac{x_n}{\sqrt{||Ax_n||}}:$$
\begin{align*}||y_n|| = \frac{||x_n||}{\sqrt{||Ax_n||}}\rightarrow0\Rightarrow y_n\rightarrow0.\end{align*}
\begin{align*}||Ay_n|| = \frac{||Ax_n||}{\sqrt{||Ax_n||}} = \sqrt{||Ax_n||}\rightarrow +\infty \text{ - противоречие с непрерывностью оператора.}\end{align*}
$$~~\blacksquare$$
'Теорема 2. Если $$Y$$ - банахово, то $$L(X,Y)$$ - тоже банахово.
Доказательство:
Рассмотрим фундаментальную последовательность $$\left\{A_n\right\},$$ $$A_n:X\rightarrow Y:$$ $$||A_n-A_m||\underset{n,m\rightarrow\infty}{\rightarrow}0.$$
\begin{align*}
\end{align*}