Многомерная система Лотки-Вольтерры. Теорема об отсутствии циклов

Материал из sawiki
Перейти к навигации Перейти к поиску

Общая система Лотки-Вольтерры. Теорема об отсутствии в ней предельных циклов.

Система Лотки-Вольттеры при $$n > 2$$.

$$u_1(t), u_2(t), ... u_n(t)$$ -- численности популяций, $$n > 2$$.

Общий вид многомерной системы выглядит таким образом:

\begin{equation} \dot{u}_i(t) = u_i(t) \cdot \left(r_i + \sum_{j=1}^n a_{ij} u_j(t) \right), \quad i = 1,2 ... n \end{equation}

Значения коэффициентов прироста популяции $$r_i$$:

  • $$r_i > 0$$: $$r_i$$ — коэффициент рождаемости.
  • $$r_i < 0$$: $$r_i$$ — коэффициент смертности.


Коэффициенты взаимодействия $$a_{ij}$$:

  • $$a_{ii} \leq 0$$: коэффициент внутривидовой конкуренции. При $$a_{ii} = 0$$ внутривидовой конкуренции нет, при $$a_{ii} < 0$$ -- есть.

Коэффициенты взаимодействия $$a_{ij}$$: коэффициент, определяющий взаимодействие $$i$$-го вида с $$j$$-ым:

  • $$a_{ij} = 0$$: нет взаимодействия.
  • $$a_{ij} < 0$$: $$j$$-й вид негативно влияет на $$i$$-й.
  • $$a_{ij} > 0$$: $$i$$-й вид "потребляет" $$j$$-й вид.

Модель пищевой цепи (частный случай системы Лотки-Вольтерра)

Если число взаимодействующих популяций больше двух, то анализ моделей Лотки–Вольтерры становится более сложным. Ограничимся ситуацией, когда модель имеет некоторый специальный вид, который облегчает анализ.

Рассмотрим экологическую систему, состоящую из $$n$$ популяций. Первая популяция (вид-автотроф) является жертвой для второй (вид-гетеротроф), которая в свою очередь жертва для третьей и т.д., вплоть до n-ой популяции, которая является хищником по отношению к $$(n-1)$$-у виду. Потоки вещества схематически представлены на следующей диаграмме:

\begin{equation*} S_1 \longrightarrow S_2 \longrightarrow \dots \longrightarrow S_n \end{equation*}

Такие экологические сообщества называются пищевыми цепями (известно, что в природе существуют пищевые цепи, содержащие до шести видов).

Принимая во внимание внутривидовую конкуренцию, получим следующую систему:

\begin{equation} \begin{aligned} \dot{u}_1 &= u_1(r_1 - a_{11}u_1 - a_{12}u_2), \\ \dot{u}_2 &= u_2(-r_2 + a_{21}u_1 - a_{22}u_2 - a_{23}u_3), \\ &\ \vdots \\ \dot{u}_i &= u_i(-r_i + a_{i,i-1}u_{i-1} - a_{ii}u_i - a_{i,i+1}u_{i+1}), \quad i = 2, \dots, n-1, \\ \dot{u}_n &= u_n(-r_n + a_{n,n-1}u_{n-1} - a_{nn}u_n). \end{aligned} \end{equation}

где все $$r_i, a_{ij} > 0$$. Случай n = 2 представляет собой модель хищник–жертва с учетом внутривидовой конкуренции [1].

Теорема об устойчивости положения равновесия:

Если система (2) имеет положение равновесия $$p \in \text{int}\,\mathbb{R}^n_+$$, то $$p$$ глобально асимптотически устойчиво. Если $$a_{ii} = 0$$ (отсутствует внутривидовая конкуренция), то положение равновесия $$p$$ устойчиво по Ляпунову.

Доказательство:

Запишем систему (2) в виде $$\dot{u}_i = u_i w_i$$ и рассмотрим функцию

\begin{equation} V(u) = \sum_{i=1}^n c_i (u_i - p_i \ln u_i), \end{equation}

где $$c_i$$ – неотрицательные постоянные, которые будут определены позднее. Вычислим производную $$L_tV$$ вдоль траекторий системы (2):

\begin{equation} L_tV = \sum_{i=1}^n c_i \dot{u}_i \frac{u_i - p_i}{u_i} = \sum_{i=1}^n c_i (u_i - p_i) w_i. \end{equation}

Так как $$p$$ – положение равновесия $$(Ap = r, \; A = \text{матрица взаимодействий, заданная (2)})$$, то

\begin{equation} w_i = r_i - a_{i,i-1}(u_{i-1} - p_{i-1}) - a_{ii}(u_i - p_i) - a_{i,i+1}(u_{i+1} - p_{i+1}). \end{equation}

Введем обозначение $$v_i = u_i - p_i$$. Тогда

\begin{equation} L_tV = -\sum_{i=1}^n c_i a_{ii} v_i^2 + \sum_{i=1}^{n-1} v_i v_{i+1}(-c_i a_{i,i+1} + c_{i+1} a_{i+1,i}). \end{equation}

Поскольку имеется свобода в выборе неотрицательных постоянных $$c_i$$, потребуем выполнения следующего равенства:

\begin{equation} -c_i a_{i,i+1} + c_{i+1} a_{i+1,i} = 0. \end{equation}

Отметим, что все постоянные $$c_i > 0$$. Следовательно, $$L_tV = -\sum_{i=1}^n c_i a_{ii} (u_i - p_i)^2 \leq 0$$, причем $$L_tV = 0$$ только в точке $$p$$.

Исследуем функцию $$V(u)$$. Положение равновесия $$p$$ – единственная критическая точка функции $$V(u)$$, причем

\begin{equation} \frac{\partial V}{\partial u_i}\bigg|_{u=p} = 0, \quad \frac{\partial^2 V}{\partial u_i^2}\bigg|_{u=p} > 0, \quad \frac{\partial^2 V}{\partial u_i \partial u_j}\bigg|_{u=p} = 0, \; i \neq j. \end{equation}

Другими словами, функция $$V(u)$$ выпуклая, с единственной точкой минимума $$p$$. По теореме Ляпунова положение равновесия $$p$$ асимптотически устойчиво и, по крайней мере, представляет собой $$\omega$$-предельное множество для начальных условий из некоторой окрестности $$p$$. С другой стороны функция $$V(u)$$ определена на всем множестве $$\mathbb{R}^n_+$$, множество нулей $$L_tV$$ состоит из единственной точки $$p$$, что означает, что $$p$$ глобально асимптотически устойчива, и все орбиты из $$\text{int}\,\mathbb{R}^n_+$$ к ней сходятся.

Если все $$a_{ii} = 0$$, то $$V(u)$$ — первый интеграл системы (2). Так как траектории системы принадлежат поверхностям уровня $$V(u)$$, то в окрестности $$p$$ они лежат на ограниченных поверхностях $$V(u) = \text{const}$$, что и означает устойчивость по Ляпунову.