Самосопряжённый линейный оператор
Версия от 14:15, 10 декабря 2025; Polina251 (обсуждение | вклад) (→Определение самосопряжённого оператора)
Определение самосопряжённого оператора
Пусть $$H$$ - гильбертово комплексное пространство (вещественный случай сводится к рассматриваемому посредством комплексификации).
Определение 1. Оператор $$A \in \mathcal{L}(H)$$ называется самосопряжённым (или эрмитовым), если $$A^* = A$$, т. е. если $$A$$ совпадает со своим сопряжённым.
Согласно этому определению $$A$$ - самосопряженный, если для любых $$x, y \in H$$ \begin{align*} (Ax, y) = (x, Ay) \end{align*}
Свойства самосопряжённого оператора
Теорема 1. Пусть $$A$$ и $$B$$ - самосопряженные операторы в $$H$$, а $$\alpha$$ и $$\beta$$ - вещественные числа; тогда $$\alpha A + \beta B$$ - самосопряжённый оператор в $$H$$.
Доказательство.