Достаточные условия существования оптимального управления

Материал из sawiki
Перейти к навигации Перейти к поиску

Теорема о существовании оптимального управления

Пусть $$\dot x = f(t, x(t), u(t)),\ u(t) \in \mathcal{P}$$, где $$f$$ удовлетворяет описанию, обозначенному в итоговых условиях на функцию $$f$$ \begin{gather*} \varphi_0(e) \rightarrow \infty\\ \varphi_1(e) = \varphi_2(e) = \ldots = \varphi_k(e) = 0 \end{gather*} Пусть также:

  1. Множество допустимых пар $$\{x(\cdot),\ u(\cdot)\}$$ не пусто, то есть $$S^1 = \{(t_0,\ t_1,\ x^0,\ u(\cdot)) \in S | \varphi(e) = 0,\ e = e(t_0,\ t_1,\ x^0,\ u(\cdot))\} \neq \emptyset$$
  2. $$\mathcal{P} \in \mathbb{R}^m$$
  3. $$\mathcal{F}(t,\ x) = \bigcup\limits_{u \in \mathcal{P}}\{f(t,\ x,\ u)\} \in \mathrm{conv}~\R^n$$, $$F(t,\ x) -$$ множество возможных скоростей (векторграмма)
  4. $$E = \{e = (t_0,\ x^0, t_1, x^1) \in \mathbb{R}^{2n+2}: \varphi(e) = 0\} -$$ компакт, $$\overline{\varphi} \in C(E)$$

Тогда решение задачи оптимального управления существует ($$\exists u^* -$$ измеримое).

Замечание: Если $$f(t,\ x,\ u) = f^0(t,\ x) + g(t,\ x)\cdot u$$, то условие $$3$$ можно заменить на $$\mathcal{P} \in \mathrm{conv}~\R^n$$

Доказательство:

Пусть $$\varphi_* = \mathrm{inf}\{\varphi_0(e): e = e(s), s \in S^1\}$$, $$\varphi_* > -\infty$$, т.к. $$\overline{\varphi} \in C(E)$$, $$E - $$ компакт. По определению инфимума: \begin{gather*} \forall \varepsilon = \frac{1}{k} \;\; \exists (t_0^{(k)},\ x^{0,\ (k)}, t_1^{(k)}, u(\cdot)^{(k)}): \;\; \varphi_* \leqslant \varphi_0(e^{(k)}) \leqslant \varphi_* + \frac{1}{k},\ e^{(k)} = (t_0^{(k)},\ x^{0,\ (k)}, t_1^{(k)}, u(\cdot)^{(k)}) \end{gather*}

План доказательства:

  • Доказать, что $$x^{(k)}(\cdot) \overset{k \rightarrow \infty}{\rightarrow} x^*(\cdot)$$ в пространстве $$C$$.
  • Доказать, что $$x^*(\cdot)$$ порождается некоторым управлением $$u^*(\cdot)$$.

Без ограничения общности, положим $$t_0^{(k)}(\cdot) \rightarrow t_0^*$$, $$t_1^{(k)}(\cdot) \rightarrow t_1^*$$, $$x^{0,(k)}(\cdot) \rightarrow x^{0,*}$$ (т.к. $$E -$$ компакт).

1) $$\frac{d}{dt}{\|x(t)\|}^2 = 2\langle x, f(t,\ x,\ u) \rangle \leqslant 2\|x\|\|f(t,\ x,\ u)\| \overset{\text{условие сублинейного роста}}{\leqslant} 2A\|x\|^2 + 2B\|x\| = (2A + 1) \|x\|^2 + \tilde{B}$$

Откуда $$\frac{d}{dt}\left(\|x(t)\|^2e^{-(2A+1)t}\right) \leqslant \tilde{B} e^{-(2A + 1)t}\|$$

$$\|x(t)\|^2 e^{-(2A+1)t} - \|{x(t_0)}^2\| e^{-(2A+1)t_0} \leqslant \int\limits_{t_0}^{t} \tilde{B} e^{-(2A + 1)s} ds$$

$$\|{x^{(k)}(t)}\|^2 \leqslant \underbrace{\|{x^{(k)}(t_0^{(k)})}\|^2 e^{(2A + 1)(t - t_0^{(k)})} + e^{(2A + 1)t} \int\limits_{t_0^{(k)}}^{t} \tilde{B} e^{-(2A + 1)s}ds}_{\text{ограниченная функция}}$$

Значит, $$\{x^k(\cdot)\}$$ равномерно ограничена: $$\forall k$$ $$\exists M: \|x^{(k)}\| \leqslant M$$.

Теперь покажем равностепенную непрерывность: $$\|x^{(k)}(t_2) - x^{(k)}(t_1)\| \leqslant \int\limits_{t_1}^{t_2}\|f(t,\ x^{(k)}(t),\ u^{(k)}(t)\|dt \leqslant \underbrace{(AM + B)}_{L}\underbrace{|t_2 - t_1|}_{\delta} < \varepsilon$$

Тогда по теореме Арцела-Асколи $$x^{(k)}(\cdot) \rightrightarrows x^*(\cdot)$$, т.е. $$x^{(k)}\rightrightarrows x^*$$ в пространстве $$C$$

$$\|{x^*(t_2) - x^*(t_1)}\| \leqslant L |t_2 - t_1|,$$ получаем $$x^*(\cdot) \in \mathrm{Lip}$$ $$\Rightarrow x^*(\cdot) \in \mathrm{AC}$$

2) Докажем, что $$\forall t$$ $$\frac{d x^*(t)}{dt} \in \mathcal{F}(t, x^*(t)) = \bigcup\limits_{u \in \mathcal{P}}\{f(t,\ x,\ u)\}$$.

Пусть $$t$$ такое, что $$\exists$$ $$\frac{d x^*(t)}{dt}$$. Обозначим $$\mathcal{F}_{\varepsilon, t} = \mathcal{F}_t + B_{\varepsilon}(0) \in \mathrm{conv}~\R^n$$. $$f(t,\ x,\ u) \in \mathrm{C}([T_0,\ T_1]\times B_M(0) \times \mathcal{P})$$, следовательно $$f$$ равномерно непрерывна, т.е.: \begin{gather*} \forall \varepsilon > 0 \;\; \exists \delta > 0: \forall (t_1, x_1, u_1), (t_2, x_2, u_2) \in [T_0, T_1] \times B_{M}(0) \times \mathcal{P}\\ |t_1 - t_2| + \|{x_1 - x_2}\| + \|{u_1 - u_2}\| < \delta\\ \|{f(t_1, x_1, u_1) - f(t_2, x_2, u_2)}\| < \varepsilon \end{gather*} Возьмем $$u_1 = u_2 = u$$, тогда $$\forall (\tau, x) \in [T_0, T_1] \times B_{M}(0) \colon$$ \begin{gather*} |\tau - t| + \|{x - x^*(t)}\| < \delta\\ \Delta f = \|f(\tau, x, u) - f(t, x^*, u)\| \leqslant \varepsilon \end{gather*} \begin{gather*} \forall u \in \mathcal{P}: f(\tau, x, u) = f(t, x^*, u) + \Delta f \end{gather*} \begin{gather*} \mathcal{F}(\tau,\ x) = \bigcup\limits_{u \in \mathcal{P}} \left\{ f(\tau,\ x,\ u) \right\} \subseteq \bigcup\limits_{u \in \mathcal{P}} \left\{ f(t,\ x^*,\ u) \right\} + B_{\varepsilon}(0) = \mathcal{F}_{\varepsilon, t}\\ \|{x^{(k)}(\tau) - x^*(t)}\| \leqslant \|{x^{(k)}(\tau) - x^{(k)}(t)}\| + \|{x^{(k)}(t) - x^*(t)}\| \end{gather*} Рассмотрим неравенство: \begin{gather*} \|{x^{(k)}(\tau) - x^*(t)}\| \leqslant \|{x^{(k)}(\tau) - x^{(k)}(t)}\| + \|{x^{(k)}(t) - x^*(t)}\| \end{gather*}