Задача о тележке
Задача о тележке
Постановка задачи
Рассмотрим задачу движение тележки.
В движение тележку приводит тяга двигателя \(F_{\textbf{вн}}\),ей будет препятствовать вязкое трение \(F_{\textbf{тр}}= -k \dot{x}\) и сопротивление среды \(F_{сопр}=-d\dot{x}^2\).
По второму закону Ньютона:
Обозначая $$ \dfrac{k}{m} = u_1 \in [u_1^{min},u_1^{max}], \frac{d}{m} = u_2 \in [u_2^{min},u_2^{max}],\dfrac{F_{\textbf{вн}}}{m} = u_3 \in [0,u_3^{max}]$$, и приводя к нормальному виду
получим следующую систему:
Добавляем начальные условия:
$$ t_0 = 0, \\ x_1(0) = x_2(0) = 0,\\ t_1= T\\ x_1(T) = L\\ x_2(t) = \varepsilon $$
Наша цель минимизировать функционал:
$$ J = \int\limits_0^T u_3(t)dt \rightarrow \inf\limits_{u(\cdot)} $$
То есть мы хотим минимизировать наши усилии при этом передвинув тележку из точки 0 в точку с координатой L.\\ Как итог получаем систему:
$$ \dot{x}_1 = x_2, \\ \dot{x}_2= -(u_1x_2+u_2x_2^2)+u_3\\ \quad u_1 \in [u_1^{min}, u_1^{max}],\quad 0<u_1^{min}<u_1^{max}\\ \quad u_2 \in [u_2^{min}, u_2^{max}],\quad 0<u_2^{min}<u_2^{max} \\ \quad u_3 \in [0,u_3^{max}],\quad 0 < u_3^{max} \\ \quad t_0 = 0, \quad x_1(0) = x_2(0) = 0 \\ \quad t_1 = T > 0, \quad x_1(T) = L, \quad x_2(T) = \varepsilon >0, \quad L > T \varepsilon \\ J = \int\limits_0^T u_3(t)dt \rightarrow \inf\limits_{u(\cdot)} $$
ПМП
Выпишем ПМП(Принцип максимума Понтрягина) для рассматриваемой задачи.\\ Первым шагом сделаем замену переменных:
\( x_0 = \int\limits_0^T u_3(t)dt \rightarrow \inf\limits_{u(\cdot)} \)
Тогда наша система примет вид:
\( \begin{cases} \dot{x}_0 = u_3,\\ \dot{x}_1 = x_2, \\ \dot{x}_2= -(u_1x_2+u_2x_2^2)+u_3\\ \end{cases} \)
Функция Гамильтона-Понтрягина примет вид:
\( \mathscr{H} = \psi_0u_3 + \psi_1x_2 + \psi_2(u_3 - u_1x_2-u_2x_2^2) \)
Учитывая все выше сказанное, ПМП примет вид:
Пусть $$ \{ x^*(\cdot), u^*(\cdot) \}$$ - оптимальная пара.
Тогда $$ \exists \tilde{\psi}:[t_0^*,t_1^*] \rightarrow \mathcal{R}^{n+1}$$ такая что:
(УН) $$\quad 1) \psi^*(t) \neq 0 , \quad t \in [0,T], $$
(CC) $$ \quad 2)$$
\( \begin{cases} \dot{\psi}_0^* = - \dfrac{\partial \mathscr{H}}{\partial x_0} = 0\\ \dot{\psi}_1^* = - \dfrac{\partial \mathscr{H}}{\partial x_1} = 0\\ \dot{\psi}_2^* = - \dfrac{\partial \mathscr{H}}{\partial x_2} = - \psi_1^{0,*}+ \psi_2^*(u_1^*+2u_2^*x_2^*)\\ \end{cases} \)
(УМ) $$ \quad 3)\mathscr{H}(\tilde{\psi}^*(t),\tilde{x}^*(t),\tilde{u}^*(t)) = \sup \limits_{u} \mathscr{H}(\tilde{\psi}^*(t),\tilde{x}^*(t),u)$$ для п.в. $$ t \in [0,T]$$
$$ \quad 4)$$
\( \psi_0^*(\cdot) \equiv const \leq 0,\\ \mathscr{M}(\tilde{\psi}^*(t),\tilde{x}^*(t)) \equiv const = 0 \)