Матричный экспоненциал
Версия от 14:01, 20 декабря 2020; Miron1 (обсуждение | вклад)
Пусть $$A = (a_{ij})$$ - квадратная матрица порядка $$n$$.
Под матричной экспонентой понимается матричная функция:
\[
\begin{equation}
\label{row}
e^{At} = \sum_{k=0}^{\infty}\frac{A^kt^k}{k!}.
\end{equation}
\]
Сходимость ряда $$(\ref{row})$$
$$\texttt{Утверждение: Ряд (\ref{row}) сходится абсолютно и равномерно для любого конечного интервала $t$.}$$
$$\texttt{Доказательство: $A = (a_{ij}) \in \mathbb{R}^{n \times n},\: A^k = (a_{ij}^{(k)})$.}$$
$$\texttt{Рассмотрим $|a_{ij}^{(2)}| = \|\sum_{l=1}^n a_{il}a_{lj}\| \leq \sum_{l=1}^n |a_{il}||a_{lj}| \leq c^2n,\texttt{ где } |a_{ij}| \leq c \texttt{ по всем } i,j. \\
|a_{ij}^{(3)}| = \|\sum_{l=1}^n a_{il}^{(2)}a_{lj}\| \leq c^3n^2. \\
\texttt{По индукции: } |a_{ij}^{(k)}| = \leq c^kn^{k-1}.
$}$$