Задача быстродействия
Будет готово 28.12.2020 к 14:00
Постановка задачи
Задача быстродействия - задача перевода системы из начального фиксированного положения в конечное, также фиксированное, положение за минимальное время.
Пусть наша система описывается следующими условиями: \[ \begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t), \\ x(t_0) = x^0, \\ x(t_1) = x^1, \\ u(\tau) \in \mathcal{P}(\tau) \in \text{conv}\mathbb{R}^m, \\ t_1 - t_0 \rightarrow \inf, \end{cases} \]
где \( x_0, x_1, t_0 \) - фикированы, \( A(t), B(t), f(t) \) - непрерывны, а \( \mathcal{P} \) непрерывно как многозначное отображение (это требование гарантирует нам, что для любого \( l: \rho(l\vert\mathcal{P}(\tau)\) по \(\tau\) непрерывна\(^1\)).
\(^1\)В частности, при \(m=1\) множество \(\mathcal{P}\) выглядит как \(\mathcal{P} = [a(\tau), b(\tau)]\); неперерывностьб многозначного отображения означает, что \(a(\tau), b(\tau)\) - непрерывны.
Отметим, что отказ от требования \(u(\tau) \in \mathcal{P}(\tau) \in \text{conv}\mathbb{R}^m\) невозможен; в этом случае \( \overline{\mathcal{X}_\mathcal{P}[t_1]} = \mathcal{X}_\overline{\mathcal{P}}[t_1] \). Разумность такого отказа показывает следующий пример:
Пример 1
Пусть система описывается уравнениями \[ \begin{cases} \dot{x} = u, \\ x(0) = 0, \\ u(\tau) \in [-1, 1]. \end{cases} \]
Тогда множеством достижимости \(\mathcal{X}_1\) буде бесконечный треугольник в I и IV квадрантах, лежащий внутри прямых \(x=t\) и \(x=-t\). При этом, геометрически ясно, что замена множества допустимых управлений с отрезка \([-1, 1]\) на двухточечное множество \(\{-1, 1\}\)не изменит множества достижимости: любую точку, лежащую внутри \(\mathcal{X}_1\), можно соединить с началом координат ломанной, содержащей звенья, параллельные прямым \(x=t\) и \(x=-1\).
Именно этот прием используется при управлении парусными судами при отсутствии попутного ветра(при этом говорят, что судно идет галсом).
Введем множество достижимости \[ \mathcal{X}[t_1] = \mathcal{X}(t_1, t_0, x^0) = \{ x = x(t_1, t_0, x^0 \vert u(\cdot)), u(\tau) \in \mathcal{P} \}. \]
Введем также трубку достижимости \(\mathcal{X}[\cdot]\). Следует понимать, что множество достижимости - это множество, а трубка достижимости - это функция, отображающая время на соответствующее множество достижимости. Ее графиком будем называть множество \( \mathcal{X}[\cdot] = \{(t,x): x\in\mathcal{X}[t]\} \).
Ключевую роль играет следующее утверждение
Утверждение 1
Если \(t_1^*-t_0\) - время оптимального взаимодействия, \( x^*, u^* \) - соответственно траектория и управления, отвечающие этому времени, то \( (t_1^*, x^*(t_1^*)) \in \partial\mathcal{X}[\cdot] \).
Следующий пример показывает, что в криволинейных координатах это утверждение, вообще говоря, неверно.
Пример 2
Пусть система описывается уравнениями \[ \begin{cases} \dot{\rho} = u_1, \vert u_1 \vert \le 1, \\ \dot{\varphi} = u_2, \vert u_2 \vert \le 1, \\ \rho(0) = \rho^0 > 0, \\ \varphi(0) = \varphi^0. \end{cases} \]
Если бы это были декартовы координаты на плоскости, то трубкой достижимости была бы "распухающий квадрат" \( \mathcal{X}[t_1] = \{ \vert x-x^0 \vert \le t_1, \vert y - y^0 \vert \le t_2 \} \). В нашем же случае это будет "распухающий кольцевой сектор", и множество достижимости не будет выпуклым. Это приведет к тому, что если финальная точка будет отвечать углу в \(\pi\), то \( (t_1^*, x^*(t_1^*)) \notin \partial\mathcal{X}[\cdot] \).
Введем функцию \(\varepsilon[t_1] = d(x^1, \mathcal{X}[t_1])\).