Геометрическая разность двух эллипсоидов. Внутренние и внешние оценки
В этой статье будут рассмотрены геометрическая разность двух эллипсоидов и ее внутренние и внешние оценки.
Содержание
Определение
Разностью двух эллипсоидов будем называть $$\varepsilon_{1} \dot{—} \varepsilon_{2}$$ \begin{gather*} \rho (l | \varepsilon_{1} \dot{—} \varepsilon_{2}) = conv( \rho(l | \varepsilon_{1}) - \rho (l | \varepsilon_{2} )) \end{gather*}
Основные понятия
Пусть $$ q \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n \times n} $$ и $$Q$$ неотрицательно определена. Эллипсоидом $$\varepsilon (q, Q) $$ с центром q и матрицей Q называется выпуклое замкнутое множество точек $$\mathcal{R}^{n}$$, опорная функция $$\rho (l | \varepsilon (q, Q)$$ которого равна $$\langle l, q \rangle + \langle l, Ql \rangle^{\frac{1}{2}}$$.
В случае, когда центр $$q$$ не упоминается будем считать, что он находится в центре координат.
Внутренние эллипсоидальные оценки
Пусть $$Q_{2}$$ - положительно определена, а $$Q_{1}$$ - неотрицательно определенная матрицы. Для оценивания разности эллипсоидов $$\varepsilon(q_{2}, Q_{2}) \dot{—} \varepsilon(q_{21}, Q_{1})$$ введем некоторые обозначения. Введем семейство параметрических матриц \begin{gather} Q(p) = (1-p)Q_{2} - (1 - \frac{1}{p})Q_{1}. \end{gather} Также рассмотрим уравнение \begin{gather} det (Q_{2} - \lambda Q_{1}) = 0 \end{gather} и обозначим корни этого уравнения \begin{gather} \lambda_{min} = \lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n} = \lambda_{max}, (\lambda_{1} > 0, lambda_{n} < \infty). \end{gather} Также обозначим \begin{gather} Pi^{+} = \left[ \lambda_{min}^{1/2}, \lambda_{max}^{1/2} \right], Pi^{-} = Pi^{+} \cap (1, \lambda_{min}). \end{gather} Лемма 1 Пусть $$\varepsilon(Q_{1}) \subseteq \varepsilon(Q_{2})$$, тогда справедливы следующие утверждения:
- Эллипcоид $$\varepsilon(q_{2} - q_{1}, Q(p))$$ невырожденный тогда и только тогда, когда $$p \in (1, \lambda_{min})$$. Для таких p эллипсоид является внутренней аппроксимацией разности $$\varepsilon(q_{2} - q_{1}, Q(p)) \subseteq \varepsilon(Q_{1}) \cdot{-} \varepsilon(Q_{2})$$
- Для фиксированного вектора $$l \in \mathbb{R}^{n}, ||l|| = 1$$ выражение
\begin{gather} \displaystyle p = \frac{\langle l, Q_{2} l \rangle^{1/2}}{\langle l, Q_{2} l \rangle^{1/2}} > 1. \end{gather} определяет параметр p. Если параметр $$p \in Pi^{-}$$, то \begin{gather} \rho(l|\varepsilon (q_{1} + q_{2},Q(p))) = \rho(l|\varepsilon (q_{1},Q_{1}) + \varepsilon(q_{2},Q_{2})). \end{gather} Также верно обратное: при заданном параметре $$p \in Pi^{-}$$ существует вектор $$l \in \mathbb{R}^{n}, ||l|| = 1$$ который обеспечивает верность равенств.
Доказательство. Из неравенства \begin{gather} \varepsilon(Q_{1}) \subseteq \varepsilon(Q_{2}) \end{gather} следует \begin{gather} \langle l, Q_{1} l \rangle < \langle l, Q_{2} l \rangle \end{gather}