Линейный оператор в банаховых пространствах
Версия от 10:15, 23 ноября 2024; Konst23 (обсуждение | вклад)
Отображения. Теорема Банаха-Штейнгауза
Пусть $$X,$$ $$Y$$ - нормированные пространства. Рассмотрим $$A: X \rightarrow Y$$ - отображение.
Определение 1. Отображение $$A$$ называется непрерывным в т. $$x_0\in X,$$ если $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n\rightarrow x_0$$ имеет место $$Ax_n\rightarrow Ax_0.$$
Лемма. Если $$A$$ - линейное отображение, которое непрерывно хотя бы в одной точке, то $$A$$ непрерывно всюду.
Доказательство:
Пусть $$A$$ непрерывно в точке $$x_0.$$ Фиксируем произвольную точку $$x\in X$$ и $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n \rightarrow x_0.$$
Рассмотрим последовательность $$\left\{y_n\right\}:$$ $$y_n=x_n-x+x_0.$$ \begin{equation} y_n \rightarrow x_0 \Rightarrow Ay_n\rightarrow Ax_0. \end{equation}
- Введем аналогичные метрическому пространству понятия для нормированных пространств.