Линейный оператор в банаховых пространствах

Материал из sawiki
Перейти к навигации Перейти к поиску

Отображения. Теорема Банаха-Штейнгауза.

Пусть $$X,$$ $$Y$$ - нормированные пространства. Рассмотрим $$A: X \rightarrow Y$$ - отображение.

Определение 1. Отображение $$A$$ называется непрерывным в т. $$x_0\in X,$$ если $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n\rightarrow x_0$$ имеет место $$Ax_n\rightarrow Ax_0.$$

Лемма. Если $$A$$ - линейное отображение, которое непрерывно хотя бы в одной точке, то $$A$$ непрерывно всюду.

Доказательство:
Пусть $$A$$ непрерывно в точке $$x_0.$$ Фиксируем произвольную точку $$x\in X$$ и $$\forall\left\{x_n\right\},$$ $$x_n\in X:$$ $$x_n \rightarrow x_0.$$

Рассмотрим последовательность $$\left\{y_n\right\}:$$ $$y_n=x_n-x+x_0.$$ \begin{align*} y_n \rightarrow x_0 \Rightarrow Ay_n = A(x_n-x)+Ax_0=\underbrace{Ax_n-Ax}_{\rightarrow\,0}+Ax_0\rightarrow Ax_0. \end{align*}$$~~\blacksquare$$

Пример

Пусть пространства $$X, Y = C[0,1],$$ а оператор $$A = \frac{d}{dt},$$ тогда область определения оператора $$D(A) = C^1[0,1].$$

Рассмотрим последовательность $$x_n(t) = \frac{\sin nt}{\sqrt{n}}\rightarrow0,$$ но $$Ax_n(t)=\sqrt{n}\cos nt\nrightarrow 0.$$ Показали, что оператор не является непрерывным.

Определение 2. Отображение $$A$$ называется ограниченным, если оно лбое ограниченное множество переводит в ограниченное множество.

Определение 3. Норму ограниченного отображения $$A:$$ $$X\rightarrow Y$$ введём, как $$||A||=\underset{||x||\leq1}{\sup}||Ax||.$$

Замечание 1. Если $$A$$ - линейное, то $$||A||=\underset{x\neq0}{\sup}\frac{||Ax||}{||x||}=\underset{||x||=1}{\sup} ||Ax||.$$

Замечание 2. $$||Ax||\leq||A||\cdot||x||.$$

Определение 4. $$L(X,Y)$$ - линейное пространство линейных ограниченных операторов (отображений), действующих из $$X$$ в $$Y$$.

Теорема 1. Линейный оператор непрерывен $$\Leftrightarrow$$ ограничен.

Доказательство:
1. (Ограничен $$\Rightarrow$$ Непрерывен)
\begin{align*} ||Ax_n-Ax|| = ||A(x_n-x)|| \leq ||A||\cdot||x_n-x||. \end{align*}
2. (Непрерывен $$\Rightarrow$$ Ограничен)
От противного. Пусть $$\exists\left\{x_n\right\}:$$ $$||x_n||\leq1,\,$$ $$||Ax_n||\rightarrow+\infty,$$ тогда рассмотрим $$y_n = \frac{x_n}{\sqrt{||Ax_n||}}:$$ \begin{align*}||y_n|| = \frac{||x_n||}{\sqrt{||Ax_n||}}\rightarrow0\Rightarrow y_n\rightarrow0.\end{align*} \begin{align*}||Ay_n|| = \frac{||Ax_n||}{\sqrt{||Ax_n||}} = \sqrt{||Ax_n||}\rightarrow +\infty \text{ - противоречие с непрерывностью оператора.}\end{align*}

$$~~\blacksquare$$

Теорема 2. Если $$Y$$ - банахово, то $$L(X,Y)$$ - тоже банахово.

Доказательство:
Рассмотрим фундаментальную последовательность $$\left\{A_n\right\},$$ $$A_n:X\rightarrow Y:\,$$ \begin{align*}||A_n-A_m||\underset{n,m\rightarrow\infty}{\rightarrow}0.\end{align*} Для любых $$x\in X$$ посл-ть $$\left\{A_nx\right\}$$ - фундаментальная: $$||A_nx-A_mx||\leq||A_n-A_m||\cdot||x||.$$ Следовательно $$\exists$$ $$\underset{n\rightarrow \infty}{\lim} A_n x = Ax.$$ \begin{align*} ||A_nx-A_mx||\leq\varepsilon\cdot||x||\Rightarrow \left\{\text{ При } m\rightarrow\infty\right\}\Rightarrow ||A_nx-Ax||\leq\varepsilon\cdot||x|| \end{align*} \begin{align*} ||A_n-A||\leq\varepsilon \Rightarrow \left\{A_n\rightarrow A\right\} \Rightarrow A \text{ - ограниченный.} \end{align*}

$$~~\blacksquare$$

Определение 5. Множество $$E,$$ $$E\subset M $$ называется нигде не плотным, если замыкание $$E$$ не содержит ни одного шара.

Определение 6. Множество называют множеством $$1$$-ой категории, если его можно представить в виде счётного объединения нигде не плотных множеств. Остальные множества - множества $$2$$-ой категории.

Теорема Банаха-Штейнгауза.

Пусть $$X, Y$$ - линейные нормированные пространства. Последовательность $$\left\{A_n\right\},$$ $$A_n\in L(X,Y).$$

Множество $$E=\left\{x\in X| \underset{n \rightarrow \infty}{\overline{\lim}}||A_nx||<+\infty\right\}$$ - множество $$2$$-ой категории.

Тогда $$\left\{A_n\right\}$$ ограничена, т.е. $$\exists M>0:$$ $$||A_n||\leq M.$$

Доказательство: