Пространства Соболева

Материал из sawiki
Перейти к навигации Перейти к поиску

Определение

Рассмотрим класс непрерывно дифференцируемых функций, заданных на [0,1]. Определим скалярное произведение \[ \left< u, v \right> = \int\limits_0^1 u(t) v(t) dt + \int\limits_0^1 u^{\prime}(t) v^{\prime} (t) dt . \]

Данное скалярное произведение порождает норму \[ \left\lVert u \right\rVert^2 = \int\limits_0^1 u^2(t) dt + \int\limits_0^1 (u^{\prime} (t))^2 dt . \]

Данное пространство не является полным. Пополним пространство по этой норме, то есть добавим к пространству все предельные элементы.

Определение. Пусть $$M$$ - метрическое пространство. Полное метрическое пространство $$R^*$$ называется пополнением пространства $$R$$, если

  • $$R$$ является подпространством пространства $$R^*$$
  • $$R$$ всюду плотно в $$R^*$$

Пример: $$\mathbb{R}$$ является пополнением $$\mathbb{Q}$$.

Теорема. Каждое метрическое пространство имеет пополнение

Доказательство теоремы можно найти в [2].