Самосопряжённый линейный оператор
Версия от 13:57, 10 декабря 2025; Polina251 (обсуждение | вклад) (→Определение самосопряжённого оператора)
Определение самосопряжённого оператора
Пусть $$H$$ - гильбертово комплексное пространство (вещественный случай сводится к рассматриваемому посредством комплексификации).
Определение 1. Оператор $$A \in \mathcal{L}(H)$$ называется самосопряжённым (или эрмитовым), если $$A^* = A$$, т. е. если $$A$$ совпадает со своим сопряжённым.
Согласно этому определению $$A$$ - самосопряженный, если для любых $$x, y \in H$$ \begin{align*} (Ax, y) = (x, Ay) \end{align*}