Самосопряжённый линейный оператор

Материал из sawiki
Перейти к навигации Перейти к поиску

Определение самосопряжённого оператора

Пусть $$H$$ - гильбертово комплексное пространство (вещественный случай сводится к рассматриваемому посредством комплексификации).

Определение 1. Оператор $$A \in \mathcal{L}(H)$$ называется самосопряжённым (или эрмитовым), если $$A^* = A$$, т. е. если $$A$$ совпадает со своим сопряжённым.

Согласно этому определению $$A$$ - самосопряженный, если для любых $$x, y \in H$$ \begin{align*} (Ax, y) = (x, Ay) \end{align*}

Свойства самосопряжённого оператора

Теорема 1. Пусть $$A$$ и $$B$$ - самосопряженные операторы в $$H$$, а $$\alpha$$ и $$\beta$$ - вещественные числа; тогда $$\alpha A + \beta B$$ - самосопряжённый оператор в $$H$$.

Доказательство.