Решения ОДУ в смысле Каратеодори

Материал из sawiki
Перейти к навигации Перейти к поиску

Рассматривается система дифферинциальных уравнений\[\dot x(t) = f(t, x(t), u(t)).\] Мы хотим понять в каком смысле определять траекторию этой системы \(x(\cdot)\), если управление \(u(\cdot)\) измеримая функция.

Условия Каратеодори

Введем обозначение $$ g(t,x) = f(t, x, u(t)).$$ Пусть \((t_0, x^0) \in \mathbb{R} \times \mathbb{R}^n \) и \(\exists a > 0, r > 0\) такие, что:

  1. Пусть \(g(t,x)\) определена для \(\forall x \in B_r(x_0)\) и почти всех \(\forall t \in [t_0-a,t_0+a];\)
  2. \(g(t,x)\) измерима по \(t\) для всех \(\forall x \in B_r(x^0)\), \(g(t,x)\) непрерывна по \(x\) для почти всех \(\dot \forall t \in [t_0-a, t_0+a];\)
  3. \(\exists m(\cdot) \) интегрируема по Лебегу при \(t \in [t_0-a, t_0+a]\) такая, что:

\begin{equation*} ||g(t,x)|| \leq m(t), \forall x \in B_r(x^{0}), \dot \forall t \in [t_0-a, t_0+a]. \end{equation*}

Эти три условия и называются условиями Каратеодори.

Абсолютно непрерывные функции

Мы бы хотели найти решение задачи Коши \begin{equation*} \begin{cases} \dot x(t) = g(t, x(t)),\\ x(t_0) = x^0, \end{cases} \end{equation*} в следующем классе функций:

  1. \( x(\cdot) \in C[t_0-a, t_0+a]; \)
  2. для почти всех \( \dot \forall t\) существует \( \exists \dot x \) и выполнено \( \dot x(t) = g(t, x(t))\).

Покажем, что условий Каратеодори самих по себе недостаточно для определения решения. Рассмотрим следующий пример \begin{equation*} \begin{cases} \dot x(t) = 0,\\ x(0) = 0. \end{cases} \end{equation*} Очевидно, что \(x \equiv 0\) является решением системы. Такое решение в рассматриваемом классе не единственно. Рассмотрим лестницу Кантора, она так же будет являться решением этой системы при наложенных ранее ограничениях.

Чтобы избежать неоднозначности из-за различных сингулярных частей в функции, наложим дополнительные ограничения на \( x \) :
$$ x(\cdot) $$ решение системы \(\Leftrightarrow \) для всех \(\forall t\) выполнено \begin{equation*} x(t) = x^0 + \int_{t_0}^{t} g(\tau, x(\tau)) \,d\tau. \\ \end{equation*}

Из курса функционального анализа известно, что если \( z(\cdot) \) измерима, то для любого \( \varepsilon > 0\) существует \( \exists \delta(\varepsilon) > 0: \) \begin{equation*} \forall Z \text{ измеримого}: \mu (Z) \leq \delta \Rightarrow \int_{\tau \in Z} z(\tau) \,d\tau \leq \varepsilon,\\ \end{equation*} что обозначает абсолютную непрерывность интеграла Лебега.
Тогда можем заменить условие 3) в условиях Каратеодори на следующие два:
3') \( \dot x \) интегрируема по Лебегу;
4) Для всех \( \forall t \in [t_0-a, t_0+a] \Rightarrow x(t) = x^0 + \int_{t_0}^{t} \dot x(\tau) \,d\tau. \)

Введём следующие определения:

Определение 1. Функции, удовлетворяющие условиям 1), 2), 3'), 4) будем называть абсолютно непрерывными, а класс таких функций будем обозначать AC[t_0-a, t_0+a] (от англ. absolutely continuous). В курсе математического анализа, это определение вводится по-другому.

Определение 1'. Будем говорить, что \( x(\cdot) \in AC[\tau_0, \tau_1], \) если для любого \( \forall \varepsilon > 0 \) существует \( \exists \delta(\varepsilon) > 0: \)
\( \forall \tau_{1}^{'}, \) \( \dots, \tau_k^{'}, \tau_1^{''}, \dots, \tau_k^{''}\) таких, что \begin{equation*} \tau_0 \leq \tau_1^{'} < \tau_1^{''} \dots < \tau_k^{'} < \tau_k^{''} \leq \tau_1, \end{equation*} выполнено\[ \sum_{j=1}^{k}|\tau_j^{''}-\tau_j^{'}|<\delta \Rightarrow \sum_{j=1}^{k}||x(\tau_j^{''})-x(\tau_j^{'}) || \leq \varepsilon. \] Так же из курса математического анализа известна эквивалентность этих определений.

Замечание. Абсолютно непрерывные функции являются непрерывными и равномерно непрерывными, но при этом не обязаны быть дифференцируемыми. В качестве контрпримера можно рассмотреть одномерную функцию $$f(x) = |x|.$$

Так же известно, что $$ Lip[\tau_0, \tau_1] \subset AC[\tau_0, \tau_1], $$ поскольку \begin{equation*} ||x(\tau'')-x(\tau') || \leq L |\tau''-\tau'| \Rightarrow \delta(\varepsilon) = \frac{\varepsilon}{L}. \end{equation*} Данное вложение является строгим, пример: $$x(t) = t^{\alpha}, 0 < \alpha < 1.$$
С учетом этих определений сформулируем новое определение.

Определение 2. Решением системы на $$t_0-a \leq \tau_0 < \tau_1 \leq t_0+a, t_0 \in [\tau_0, \tau_1]$$ по Каратеодори называется функция $$x(\cdot),$$ удовлетворяющая следующим критериям:

  1. \( x(\cdot) \in AC[\tau_0,\tau_1];\)
  2. \(x(t_0) = x^{0}; \)
  3. для почти всех \( \dot \forall t \in (\tau_0, \tau_1) \Rightarrow \dot x(t) = g(t,x(t)). \)

Существование решения по Каратеодори

Для доказательства основной теоремы о существовании нам потребуется сформулировать несколько вспомогательных теорем.
Теорема 1(Scorza Dragoni G., 1948). Пусть \( g(t,x) \) измерима по $$t$$ для всех \( \forall x \in B_r(x^0)\) и непрерывна по \(x\) для почти всех \( \dot \forall t \in [\tau_0, \tau_1]. \) Тогда $$\forall \varepsilon$$ $$ \Rightarrow \exists K \subseteq [\tau_0, \tau_1], K $$ компакт, такой что \begin{equation*} \mu ([\tau_0, \tau_1] \setminus K) \leq \varepsilon \end{equation*} и \( g(t,x) \) суженная на \( K\times B_r(x^0) \) непрерывна по \((t,x) \)
Теорема 2(Критерий измеримости Лузина). Функция \( z(t) \) измерима на \( t \in [\tau_0, \tau_1] \Longleftrightarrow \forall \varepsilon > 0 \ \exists K \subseteq [\tau_0, \tau_1], K \) компакт такой, что \begin{equation*} \mu ([\tau_0, \tau_1] \setminus K) \leq \varepsilon \end{equation*} и \(z(t) \) суженная на \( K \) непрерывна.
Замечание 3. Из теоремы Лузина следует, что для \( g(t,x)\) существует \(K(x)\), а из теоремы 1 следует существование универсального \(K\)(на шаре).
Следствие 1.(Частный случай Scorza Dragoni) Если \( g(t,x) \) измерима по \(t\) для всех \(\forall x \), непрерывна по \( x \) для почти всех \(\dot \forall t\),а \(x(\cdot)\) измерима, то функция \(g(t,x(t)) \) измерима по \( t. \)
Доказательство. Функция \(u(\cdot) \) измерима, следовательно, из критерия Лузина \(\forall \varepsilon > 0 \exists K \subseteq [t_0-h, t_0+h], K \) компакт\[\mu([\tau_0,\tau_1] \setminus K) \leq \varepsilon \] и \( u \) при сужении на \( K \) непрерывна. Тогда \begin{equation*} z(\tau) = g(\tau, x^{(k)}(\tau)) = f(\tau, x^{(k)}(\tau),u(\tau)) \end{equation*} непрерывна на \(K\), а значит, \( z(\cdot) \) измерима.\(\blacksquare\)
Теперь можно сформулировать теорему о существовании решения.
Теорема 3(Существование решения исходной системы). Пусть \( 0 < h \leq a \) и \begin{equation*} \int_{t_0}^{t_0+h}m(\tau)d\tau \leq r, \int_{t_0-h}^{t_0}m(\tau)d\tau \leq r. \end{equation*} Тогда существует \( \exists x(\cdot) \in AC[t_0-h, t_0+h] \) решение по Каратеодори исходной системы ДУ в смысле Каратеодори.
Доказательство. Выпишем следующую последовательность функций: \begin{equation*} x^{(0)}(t) \equiv x^{0}, \end{equation*} \begin{equation*} x^{(k+1)}(t) = x^{0}+\int_{t_0}^{t}g(\tau,x^{(k)}(k))d\tau. \end{equation*} Элементы этой последовательности определены корректно, поскольку \( g(\tau, x^{(k)}(\tau)) \) измеримы по \( \tau \) в силу следствия 1, ограничены интегрируемой функцией \( m(t) \) (по условию теоремы) и, следовательно интегрируем по Лебегу. При этом \( x^{(k)}(\cdot) \in C \Rightarrow x^{(k)}(\cdot) \in AC \). Для того, чтобы воспользоваться теоремой Арцела-Асколи, нам необходимо показать равностепенную непрерывность и равномерную ограниченность последовательности.

Равномерная ограниченность (при $$t \geq t_0,$$ для $$t \leq t_0$$) аналогично)\[ ||x^{(k+1)}(t)-x^{0}|| \leq \int_{t_0}^{t}||g(\tau,x^{(k)}(\tau))||d\tau \leq \int_{t_0}^{t}m(\tau) d\tau \leq r.\] Покажем равностепенную непрерывность\[ \forall \varepsilon > 0 \exists \delta(\varepsilon): \forall t', t'': |t'-t''| \in [t_0-h,t_0+h], t'\leq t'':\leq \delta\] \begin{equation*} \forall n \in \mathbb{N} \Rightarrow ||x^{(n)}(t'')-x^{(n)}(t')||\leq \varepsilon? \end{equation*} Для нашей последовательности \begin{equation*} ||x^{(n)}(t'')-x^{(n)}(t')||= || \int_{t'}^{t''}g(s),x^{(n-1)}(s)ds||\leq \int_{t'}^{t''}m(s)ds \leq \varepsilon \end{equation*} в силу абсолютной непрерывности интеграла Лебега. Тогда последовательность непрерывных функций \( x^{(k)}(\cdot) \) равностепенно непрерывно и равномерно ограничено и, в силу теоремы Арцела-Асколи, \( x^{(k)} \rightrightarrows x(\cdot). \) При этом \begin{equation*} || x^{(k)}(\cdot)-x(\cdot)||_C = \max_{t\in [t_0-h,t_0+h]}|| x^{(k)}(t)-x(t)||, \end{equation*} то есть сходимость в С аналогична равномерной сходимости, и \( x(\cdot) \in C[t_0-h, t_0+h].\) Наконец, переходим к пределу в итеративной последовательности\[ x(t) = x^{0} + \int_{t_0}^{t}g(s,x(s))ds, x(\cdot) \in AC[t_0-h, t_0+h].\] Теорема доказана.\(\blacksquare\)

Единственность решения

Для единственности решения мы обычно требуем липшицевость по \( x \text{:} \)\[ || g(t,x'' - g(t,x'))|| \leq L(t)||x'' - x'|| \] Где \(L(t) -\) интегрируема по Лебегу.
Ослабив это условие, добавим его к списку условий Каратеодори 1)-3):
\( 4) \ \ \forall x', x'' \ \ \exists L(t) - \) интегрируема по Лебегу\[ \langle g(t,x'') - g(t,x'), x'' - x' \rangle \leq L(t)||x'' - x' ||.\] Нетрудно показать что всякая липшицевая по \(x\) функция удовлетворяет этому условию в силу неравенства Коши-Буняковсвого-Шварца.
Теорема 4 (Теорема о единственности решения по Каратеодори).
Пусть выполнены условия Каратеодори 1),2),3) а так же 4). Тогда решение по Каратеодори задачи Коши единственно.
Доказательтво:
Предположим противное. Пусть \(x'(t)\) и \(x''(t) - \) два различных решения задачи Коши на \([t_{0}, t_{0} + h]\). Рассмотрим вспомогательную функцию\[z(t) = ||x''(t) - x'(t)||^{2} = \langle x''(t) - x'(t),x''(t) - x'(t) \rangle.\] Она дифференцируема почти всюду, и для п.в. \(t\)\[ \frac{dz}{dt} = 2 \langle g(t,x''),g(t,x'),x''(t) - x'(t) \rangle \leq 2L(t)z(t).\] При этом \(z(t_{0}) = 0 \ \ \)(из определения \( z\)). Тогда неравенство\[ \frac{dz}{dt} - 2L(t)z(t) \leq 0\] домножим на \( \exp \{\int_{t_{0}}^{t} L(\xi)d\xi \}:\)\[ \frac{d}{dt}(z(t)e^{-2\int_{t_{0}}^{t}L(\xi)d\xi}) \leq 0 \] для п.в. \(t\) (верно там, где она дифференцируема). Проинтегрировав получаем\[ 0 \leq z(t) e^{-2\int_{t_{0}}^{t}L(\xi)d\xi} \leq 0. \] Левое неравенство достигается в силу определения \(z\), а правое следует из того факта, что производная отрицательная, а значит \(z(t_{0}) = 0.\) Тогда в обоих случаях достигаются равенства, и функции совпадают.

Продолжимость решения

В случае с решением по Каратеодори также возникает вопрос продожимости решения вправо. В условиях Каратеодори есть ограниченность интегрируемой функции, в теореме о существовании решении мы ограничили интеграл от этой функции \(m(\cdot)\) значением \(r\). Разве этого не достаточно? Оказывается, нет.
Мы рассматриваем систему на отрезке времени \( [t_{0} - a, t_{0} + a]. \) Зафиксируем \(h_{1} < a\) и проинтегрируем исходную систему на \( [t_{0}, t_{0} + h_{1}]. \) При этом \(||x(t_{0}) - x^{0}| < r_{1}.\) Переобозначим полученное значение в точке \( \xi_1 = x(t_{0} + h_{1}) \) и запишем новую задачу Коши\[ \begin{cases} \dot{x}(t) = g(t,x(t)),\\ x(t_{0} + h_{1}) = \xi^{1} \end{cases} \] Таким образом, мы продвинулись на \(h_{1}\) вправо по времени.
Далее аналогичным образом выберем \(h_{2},h_{3} \) и т.д. Для каждой получившейся задачи Коши мы можем взять новую \( m(\cdot) \) и варьировать соответствующее ей значение \(r\), устремляя таким образом \(h \rightarrow a\) и \( h \rightarrow +\infty\). При этом \(r\) не будет ограничено, если \( h_{1} + h_{2} + \ldots < a. \)
Пример 1. \begin{equation*} \begin{cases} \dot{x}(t) = (x(t))^{2}\\ x(t) = 1 \end{cases} \end{equation*} Проинтегрировав систему: \begin{equation*} \int \frac{dx}{x^{2}} = \int dt \end{equation*} получим решение \( x(t) = \frac{1}{1 - t} \), неограниченно растущее в окрестности \(t = 1\).
Покажем, что непродолжимость решения может возникать только в случае неограниченного роста функции. Введем обозначения: \begin{equation} \overline{\tau} = \sup \{ \tau \in (t_{0}, t_{0} + a): \exists x(\cdot) - \text{решение [[Решения ОДУ в смысле Каратеодори#Абсолютно непрерывные функции|ЗК]] при } t \in [t_{0}, \tau]\}, \end{equation} \begin{equation} \underline{\tau}= \inf \{ \tau \in (t_{0} - a, t_{0}): \exists x(\cdot) - \text{решение [[Решения ОДУ в смысле Каратеодори#Абсолютно непрерывные функции|ЗК]] при } t \in [\tau,t_{0}]\}. \end{equation} Введенные обозначения корректны, поскольку множества непусты в силу существования решения и его ограниченности на отрезке (функции непрерывны).
Теорема 5.
Пусть \(\overline{\tau} < t_0 + a \ (\underline{\tau} > t_0 - a). \) Тогда для \(\forall r > 0 \ \exists \tau \in (t_0, \overline{\tau}) (\tau \in (\underline{\tau}, t_0)) \) такое, что \( ||x(\tau) - x^0|| = r.\)
Доказательство.
Предположим противное. Пусть \(\exists \overline{r} > 0: \forall \tau \in (t_0, \overline{\tau}) \Rightarrow ||x(\tau) - x^0|| < \overline{r}. \)
Пусть \(\Delta > 0, r = \overline{r} + \Delta,\) тогда \(\forall t \in [t_0, \overline{\tau}) \) верно \begin{equation*} B_\Delta (x(t)) \subseteq B_r(x^0). \end{equation*} Возьмем \(\delta = t_0 + a - \overline{\tau} > 0. \) Тогда \(\overline{\tau} + \delta < t_0 + a. \)
Для любого \(\forall \tau \in [t_0, \overline{\tau}) \Rightarrow [\tau - \delta, \tau + \delta]\times B_\Delta(x(\tau)) \subseteq [t_0 - a, t_0 + a]\times B_r(x^0). \)
Существует \(\exists h > 0, h < \delta: \int_{\tau}^{\tau+h}m(s)ds \leq \Delta. \) При этом получается, что \(h-\) не зависит от \(\tau\) (в силу абсолютной непрерывности интеграла Лебега). То есть мы нашли универсальный шаг, на который можем продвигаться при построении решения\(:\) \(h- \) универсально для всех \(\tau \in [t_0, \overline{\tau}),\) то есть мы можем проинтегрировать \(x(\cdot) \) до момента \(\tau + h \) для любого \(\tau. \) По определению \(\overline{\tau}- \) это супремум всех моментов времени, когда существует решение. Из определения супремума \(: \exists \tau: \overline{\tau} - \tau < h/2. \) Для этого \(\tau \) проинтегрируем систему до \(\tau + h. \) Но тогда получается, что \(\tau + h > \overline{\tau}, \) что приводит нас к противоречию.
Теорема доказана.
Отбросим теперь в условиях Каратеодори условие с \(a\) и заменим отрезок времени на \([t_0,t_1] \) либо \(\R \) (в 1) и 2)) и добавим условие продолжимости вправо(влево). \begin{equation} \langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x,\alpha,\beta = const >0 \end{equation} \begin{equation*} (-\langle g(t,x),x \rangle \leq \alpha||x||^2 + \beta). \end{equation*} Условие продолжимости в обе стороны (условие сублинейного роста)\(:\) \begin{equation*} ||g(t,x)|| \leq ||g(t,x)||||x|| \leq A||x||^2 + B||x|| \leq \alpha||x||^2 + \beta. \end{equation*} Замечание. Из условия сублинейного роста следует продолжимость в обе стороны, поскольку \begin{equation} \langle g(t,x),x\rangle \leq ||g(t,x)||||x|| \leq A||x||^2 + B||x|| \leq \alpha||x||^2 + \beta. \end{equation} Как показать, что такие \(\alpha, \beta \) существуют? Положим \(\alpha = A + 1, \) тогда дискриминант \(||x||^2 - B||x|| + \beta \geq 0 \) будет отрицательный, то есть это будет верно для всех \(\beta. \)
Теорема 6.
Пусть выполнено условие (3). Тогда решение \(x(\cdot)\) задачи Коши продолжимо вправо.
Доказательство.
Предположим противное. Тогда в силу предыдущей теоремы, \(||x(t)|| \) не ограничена. Рассмотрим \(z(t) = ||x(t)||^2 = \langle x(t),x(t) \rangle. \) \begin{equation*} \frac{dz}{dt} = 2\langle g(t,x(t)),x(t) \rangle \leq 2\alpha z(t) + 2\beta, \end{equation*} \begin{equation*} \frac{dz}{dt} - 2\alpha z \leq 2\beta. \end{equation*} Домножим на \(exp\{-2\alpha t \}: \) \begin{equation*} \frac{d}{dt}(z(t)e^{-2\alpha t}) \leq \beta e^{-2\alpha} \Rightarrow z(t)e^{-2\alpha t} - z(t_0)e^{-2\alpha t_0} \leq \int_{t_0}^{t}2\beta e^{-2\alpha s}ds \Rightarrow 0 \leq z(t) \leq z(t_0)e^{-2\alpha t_0} + \int_{t_0}^{t}2\beta e^{-2\alpha s}ds. \end{equation*} Значит, \(z(t) \) ограничена, следовательно, \(||x|| \) ограничена, а значит, продолжимость вправо есть.
Теорема доказана.
Наконец можем заменить условие 3) в условия Каратеодори условием сублинейного роста, положив \(m(t) = Ar + B \) (\(r- \) из условий теоремы существования решения).

Итоговые условия на \(f(t,x,u) \)

  1. \(f(t,x,u) \) определена на \(\R \times \R^n \times \R^m \) (или \([t_0, t_1]\times \R^n \times \R^m \));
  2. \(f(t,x,u)\) непрерывна по по \((t,x,u), \ u(\cdot)- \) измерима;
  3. \(||f(t,x'',u) - f(t,x',u)|| \leq L||x'' - x'||,L = const\);
  4. \(||f(t,x,u)|| \leq A||x|| + B, \forall(t,x,u).\)

Из них следуют соответствующие условия на \(g(t,x):\)

  1. \(g(t,x)\) определена п.в. \(t \in \R\) для всех \(\forall x\) (п.в \(t \in [t_0,t_1]\) для всех \(\forall x\));
  2. \(g(t,x)-\) измерима по \(t\) для всех \(x\); \(g(t,x)-\) непрерывна по \(x\) для п.в. \(\overset{.}{\forall}t \in \R(t \in [t_0, t_1]) \);
  3. \(||g(t,x'') - g(t,x')|| \leq L(t)||x'' - x'||;\)
  4. Условие продолжимости вправо (влево)\(: \ \langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta \ \forall x, \alpha, \beta = const > 0 \ (-\langle g(t,x),x\rangle \leq \alpha ||x||^2 + \beta ). \)

Список литературы

1) Лекции по курсу "Оптимальное управление". Лектор: Комаров Юрий, 2020/2021.
2) А.Н.Колмогоров, С.В.Фомин. Элементы теории функций и функционального анализа. Издательство "ФИЗМАТЛИТ". 2019