Геометрическая разность двух эллипсоидов. Внутренние и внешние оценки: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 91: Строка 91:
 
\begin{gather}
 
\begin{gather}
 
\mathcal{E}(0, Q) \subseteq \mathcal{E}(0, Q(-p)) \subseteq \mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}.
 
\mathcal{E}(0, Q) \subseteq \mathcal{E}(0, Q(-p)) \subseteq \mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}.
\begin{gather}
+
\end{gather}
 
Мы можем считать, что $$\mathcal{E}(0, Q)$$ касательно к $$mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}$$, и что будет существовать вектор $$l = \overline{l} \in \mathbb{R}^{n}, ||\overline {l}|| = 1$$, такой, что
 
Мы можем считать, что $$\mathcal{E}(0, Q)$$ касательно к $$mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}$$, и что будет существовать вектор $$l = \overline{l} \in \mathbb{R}^{n}, ||\overline {l}|| = 1$$, такой, что
 
\begin{gather}
 
\begin{gather}
 
\rho(\overline l|\mathcal{E}(0, Q)) = \rho(\overline l|\mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}).
 
\rho(\overline l|\mathcal{E}(0, Q)) = \rho(\overline l|\mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}).
 
\end{gather}
 
\end{gather}
 +
Возьмем $$\mathcal{E}(0, Q(- \overline{p}))$$, где
 +
\begin{gather}
 +
\overline{p} = \langle \overline{l}, Q_{1}\overline{l} \rangle^{\frac{1}{2}} \langle \overline{l}, Q_{2}\overline{l} \rangle^{-\frac{1}{2}}
 +
\end{gather}
 +
и докажем, что матрица $$\mathcal{E}(0, Q(- \overline{p}))$$ положительно определенная. Для этого определим матрицу
 +
\begin{gather}
 +
D(p^{*}) = (1 + (p^{*})^{-1})Q + (1 + p^{*})Q_{2}
 +
\end{gather}
 +
или
 +
\begin{gather}
 +
Q = (1 - p^{-1})D(p^{*}) + (1 - p)Q_{2}
 +
\end{gather}
 +
где
 +
\begin{gather}
 +
p^{*} = \langle \overline{l}, Q\overline{l} \rangle^{\frac{1}{2}} \langle \overline{l}, Q_{2}\overline{l} \rangle^{-\frac{1}{2}}
 +
\end{gather}
 +
и
 +
\begin{gather}
 +
p = p^{*} + 1.
 +
\end{gather}
 +
 +
 +
 +
 +
 +
 +
 +
 +
 
Давайте теперь выберем обратимую матрицу T такую, чтобы матрицы \( Q^{*}_1 = T'Q^{*}_1T ,Q^{*}_2 = T'Q^{*}_2T\) были бы обе диагональными. Существование подобной трансформационной матрицы T следует из результатов Линейной Алгебры и теории матриц.
 
Давайте теперь выберем обратимую матрицу T такую, чтобы матрицы \( Q^{*}_1 = T'Q^{*}_1T ,Q^{*}_2 = T'Q^{*}_2T\) были бы обе диагональными. Существование подобной трансформационной матрицы T следует из результатов Линейной Алгебры и теории матриц.
 
<br>
 
<br>

Версия 04:10, 3 марта 2023

В этой статье будут рассмотрены геометрическая разность двух эллипсоидов и ее внутренние и внешние оценки.

Определение

Разностью двух эллипсоидов будем называть $$\varepsilon_{1} \dot{—} \varepsilon_{2}$$ \begin{gather*} \rho (l | \varepsilon_{1} \dot{—} \varepsilon_{2}) = conv( \rho(l | \varepsilon_{1}) - \rho (l | \varepsilon_{2} )) \end{gather*}

Основные понятия

Пусть $$ q \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n \times n} $$ и $$Q$$ неотрицательно определена. Эллипсоидом $$\varepsilon (q, Q) $$ с центром q и матрицей Q называется выпуклое замкнутое множество точек $$\mathcal{R}^{n}$$, опорная функция $$\rho (l | \varepsilon (q, Q)$$ которого равна $$\langle l, q \rangle + \langle l, Ql \rangle^{\frac{1}{2}}$$.

В случае, когда центр $$q$$ не упоминается будем считать, что он находится в центре координат.

Внутренние эллипсоидальные оценки

Пусть $$Q_{2}$$ - положительно определена, а $$Q_{1}$$ - неотрицательно определенная матрицы. Для оценивания разности эллипсоидов $$\mathcal{E} (q_{2}, Q_{2}) \dot{—} \mathcal{E} (q_{21}, Q_{1})$$ введем некоторые обозначения. Введем семейство параметрических матриц \begin{gather} Q(p) = (1-p)Q_{2} - (1 - \frac{1}{p})Q_{1}. \end{gather} Также рассмотрим уравнение \begin{gather} det (Q_{2} - \lambda Q_{1}) = 0 \end{gather} и обозначим корни этого уравнения \begin{gather} \lambda_{min} = \lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n} = \lambda_{max}, (\lambda_{1} > 0, lambda_{n} < \infty). \end{gather} Также обозначим \begin{gather} Pi^{+} = \left[ \lambda_{min}^{1/2}, \lambda_{max}^{1/2} \right], \\ Pi^{-} = Pi^{+} \cap (1, \lambda_{min}). \end{gather} Лемма 1 Пусть $$\mathcal{E} (Q_{1}) \subseteq \mathcal{E} (Q_{2})$$, тогда справедливы следующие утверждения:

  • Эллипcоид $$\mathcal{E} (q_{2} - q_{1}, Q(p))$$ невырожденный тогда и только тогда, когда $$p \in (1, \lambda_{min})$$. Для таких $$p$$ эллипсоид является внутренней аппроксимацией разности $$\mathcal{E} (q_{2} - q_{1}, Q(p)) \subseteq \mathcal{E} (Q_{1}) \cdot{-} \mathcal{E} (Q_{2})$$
  • Для фиксированного вектора $$l \in \mathbb{R}^{n}, ||l|| = 1$$ выражение

\begin{gather} p = \langle l, Q_{1}l \rangle^{\frac{1}{2}} \langle l, Q_{2}l \rangle^{-\frac{1}{2}} \end{gather} определяет параметр $$p$$. Если параметр $$p \in Pi^{-}$$, то \begin{gather} \rho(l|\mathcal{E} (q_{1} + q_{2},Q(p))) = \rho(l|\mathcal{E} (q_{1},Q_{1}) + \mathcal{E} (q_{2},Q_{2})). \end{gather} Также верно обратное: при заданном параметре $$p \in Pi^{-}$$ существует вектор $$l \in \mathbb{R}^{n}, ||l|| = 1$$ который обеспечивает верность равенств.

Лемма 2 Пусть C положительно определенная симметричная матрица с элементами \( {c_{ij}} \). Для фиксированного вектора $$l \in \mathbb{R}^{n}, ||l|| = 1$$ и предположим, что для некоторого $$m \in [0,n]$$ имеем \begin{gather} l_j = 0,\text{ }если\text{ } j \in \overline{1,m};\\ l_j \neq 0,\text{ }если\text{ } j = \overline{m+1,n}. \end{gather} Помимо этого будем считать, что $$\mathcal{E}_{1} = \mathcal{E}(0,Q_{1}), \mathcal{E}_{2} = \mathcal{E}(0,Q_{2})$$, а матрицы $$Q_{1}, Q_{2}, Q$$ диагональные. Если выполнено: \begin{gather} \mathcal{E}(0, Q) \subseteq \mathcal{E}(0, C) \subseteq \mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}, \end{gather} и \begin{gather} \rho(l|\mathcal{E}(0, Q)) = \rho(l|\mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}). \end{gather} Тогда \begin{gather} c_{ij} = 0, \text{ для всех } i \neq j,\text{ } i \in \overline{m+1,n}. \end{gather}

Лемма 3

Считаем эллипсоиды $$\mathcal{E}(0, C), \mathcal{E}_{1} = \mathcal{E}(0,Q_{1}), \mathcal{E}_{2} = \mathcal{E}(0,Q_{2})$$ невырожденными, а матрицы $$Q_{1}$$ и $$Q_{2}$$ диагональными. Также пусть задан вектор $$l \in \mathbb{R}^{n}, ||l|| = 1$$, параметр $$p$$ считается известным ввиду Леммы 1. В таком случае если эллипсоид корректно определен, тогда из следующих утверждений: \begin{gather} \mathcal{E}(0, Q(-p)) \subseteq \mathcal{E}(0, C) \subseteq \mathcal{E}_{1} cdot{-} \mathcal{E}_{2} \end{gather} и \begin{gather} \rho(l|\mathcal{E}(0, Q(-p))) = \rho(l|\mathcal{E}_1 cdot{-} \mathcal{E}_2), \end{gather} следует \begin{gather} \mathcal{E}(0,Q(p)) = \mathcal{E}(0, C)\text{ и }p\in\Pi^{+} . \end{gather}


Теорема 1 Предполагая, что $$\mathcal{E}_{2} = \mathcal{E}(q_{2}, Q_{2})\in int \mathcal{E}_{1} = \mathcal{E}(q_{1}, Q_{1})$$. Тогда максимальное по включению множество, оценивающее разность $$ \mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}$$, состоит из эллипсоидов вида \begin{gather} \mathcal{E}(q_{1} - q_{2}, Q(-p)), p \in \Pi^{-}. \end{gather}

Доказательство Не ограничивая общности, ссылаясь на Лемму из первого раздела, мы можем предложить, что все центры эллипсоидов находятся в нуле, т.е.$$q_{1} = q_{2} = 0$$.
Пусть есть такой эллипсоид, что $$ \mathcal{E}(0, Q) \subseteq \mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}$$.Найдем такой параметр $$p$$, что для эллипсоида $$\mathcal{E}(0, Q(-p))$$ будет выполнено: \begin{gather} \mathcal{E}(0, Q) \subseteq \mathcal{E}(0, Q(-p)) \subseteq \mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}. \end{gather} Мы можем считать, что $$\mathcal{E}(0, Q)$$ касательно к $$mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}$$, и что будет существовать вектор $$l = \overline{l} \in \mathbb{R}^{n}, ||\overline {l}|| = 1$$, такой, что \begin{gather} \rho(\overline l|\mathcal{E}(0, Q)) = \rho(\overline l|\mathcal{E}_{1} \cdot{-} \mathcal{E}_{2}). \end{gather} Возьмем $$\mathcal{E}(0, Q(- \overline{p}))$$, где \begin{gather} \overline{p} = \langle \overline{l}, Q_{1}\overline{l} \rangle^{\frac{1}{2}} \langle \overline{l}, Q_{2}\overline{l} \rangle^{-\frac{1}{2}} \end{gather} и докажем, что матрица $$\mathcal{E}(0, Q(- \overline{p}))$$ положительно определенная. Для этого определим матрицу \begin{gather} D(p^{*}) = (1 + (p^{*})^{-1})Q + (1 + p^{*})Q_{2} \end{gather} или \begin{gather} Q = (1 - p^{-1})D(p^{*}) + (1 - p)Q_{2} \end{gather} где \begin{gather} p^{*} = \langle \overline{l}, Q\overline{l} \rangle^{\frac{1}{2}} \langle \overline{l}, Q_{2}\overline{l} \rangle^{-\frac{1}{2}} \end{gather} и \begin{gather} p = p^{*} + 1. \end{gather}





Давайте теперь выберем обратимую матрицу T такую, чтобы матрицы \( Q^{*}_1 = T'Q^{*}_1T ,Q^{*}_2 = T'Q^{*}_2T\) были бы обе диагональными. Существование подобной трансформационной матрицы T следует из результатов Линейной Алгебры и теории матриц.
Преобразование T не будет нарушать следующего соотношения: \( \mathcal{E}_1 + \mathcal{E}_2 \subseteq \mathcal{E}(0, Q^{*})\), таким образом с конфигурационной матрицей \( Q^{*} = T'QT\) будет справедливо следующее \[ \mathcal{E}(0, Q^{*}_1) + \mathcal{E}(0, Q^{*}_2) \subseteq \mathcal{E}(0, Q^{*}) . \] Пользуясь отображением \( l = T z \) можно преобразовать тождество \[ (\overline l, Q \overline l)^{\frac{1}{2}} = (\overline l, Q_1 \overline l)^{\frac{1}{2}} + (\overline l, Q_2 \overline l)^{\frac{1}{2}} \]

к виду \[ (\overline z, Q^{*} \overline z)^{\frac{1}{2}} = (\overline z, Q^{*}_1 \overline z)^{\frac{1}{2}} + (\overline z, Q^{*}_2 \overline z)^{\frac{1}{2}}, \]

где \(\overline z = T^{-1} \overline l \) Далее можно будут справедливыми следующие преобразования:

\[ \overline p = (\overline z, Q^{*}_1 \overline z)^{\frac{1}{2}} (\overline z, Q^{*}_2 \overline z)^{-\frac{1}{2}}; \]



\[ Q^{*}(\overline p) = (1 + \overline p^{-1})Q^{*}_1 + (1 + \overline p)Q^{*}_2. \] Приходим к соотношению

\[ \mathcal{E}(0, Q^{*}_1) + \mathcal{E}(0, Q^{*}_2) \subseteq \mathcal{E}(0, Q^{*}(\overline p)); \]


\[ \rho(\overline z|\mathcal{E}(0, Q^{*}_1)) +\rho(\overline z|\mathcal{E}(0, Q^{*}_2)) = \rho(\overline z|\mathcal{E}(0, Q^{*}(\overline p)) = \rho(\overline z|\mathcal{E}(0, Q^{*}). \]

Из Леммы 3 Существует вектор \( z^{*}\) удовлетворяющий следующему: \[ \rho(z^{*}|\mathcal{E}(0, Q^{*}(\overline p))) \gt \rho(z^{*}|\mathcal{E}(0, Q^{*})) . \]

Очевидно , что вектора \( z^{*}\) и \(\overline z \) неколлинеарны. Определим пространство Z как пространство, натянутое на данные векторы. А \(\mathcal{E}_z (0, Q) \) есть проекция эллипсоида на пространство Z.

\[ \mathcal{E}_z (0, Q^{*}) \subseteq \mathcal{E}_z (0, Q^{*}(\overline p)) ; \]

\[ \rho(\overline z|\mathcal{E}_z (0, Q^{*})) = \rho(\overline z|\mathcal{E}_z (0, Q^{*}(\overline p))) = \rho(\overline z|\mathcal{E}_z (0, Q^{*}_1) + \mathcal{E}_z (0, Q^{*})_2). \]

Из результатов Леммы 3 \( \mathcal{E}_z (0, Q^{*}) = \mathcal{E}_z (0, Q^{*}(p)) \). $$\blacksquare$$

Внешние эллипсоидальные оценки.