Метрическое пространство

Материал из sawiki
Перейти к навигации Перейти к поиску

Определение

Метрическим пространством M называется множество элементов $$x, y,\dots,$$ в котором любой паре элементов $$x, y$$ поставлено в соответствие некоторое число $$d(x,y)$$, называемое метрикой или расстоянием, удовлетворяющее следующим аксиомам:

  1. $$d(x,y) \geqslant 0$$, причем $$d(x,y) = 0 \Leftrightarrow x = y~~\forall x,y \in M$$.
  2. $$d(x,y) = d(y,x)~~\forall x,y \in M$$.
  3. $$d(x,y) \leqslant d(x,z) + d(z,y)~~\forall x,y,z \in M$$.

Вспомогательные определения и утверждения

Примеры метрик:

    • $$M$$ = $$\mathbb{R},~~d(x,y) = |x-y|$$.
    • $$M$$ = $$\mathbb{R^n},~~d(x,y) = \sqrt{(x_1-y_1)^2+\dots+(x_n-y_n)^2}$$.
    • $$M$$ = $$\mathbb{C},~~z=x+iy,~~d(z_{1},z_{2}) = |z_{1}-z_{2}|$$.
    • $$M$$ = $$C[a,b],~~d(f,g) = \max \limits_{x \in [a,b]}|f(x) - g(x)|$$.
    • $$M$$ = $$L_{p}(X,\mu),~~p \geq 1, ~~d(f,g) = ||f-g||_{L_{p}}=(\int_{X}{|f(x)-g(x)|^{p}d\mu} )^{\frac{1}{p}}$$.
    • $$M$$ = $$l_{p}=\{x=(x_{1},x_{2},...):\sum_{k=1}^{\infty }{|x_{k}|^{p} < \infty} \},~~p \geq 1, ~~d(x,y) = ||x - y||_{l_{p}} = \sqrt[p]{\sum_{k=1}^{\infty }|x_{k}-y_{k}|^{p} } $$.

Лемма 1. Если $$d$$ - метрика, то $$\dfrac{d}{1+d}$$ - тоже метрика.

Доказательство:

Достаточно доказать неравенство треугольника. Пусть $$d = d(x,y), d_1 = d(x,z), d_2 = d(z,y)$$, тогда неравенство \[ \dfrac{d}{1+d} \leqslant \dfrac{d_1}{1+d_1} + \dfrac{d_2}{1+d_2} \] следует из $$d \leqslant d_1 + d_2$$. $$\blacksquare$$

Последовательность $$\left\{x_{n}\right\}_{n=1}^{\infty}$$, где все $$x_{n} \in M$$, называется сходящейся к $$x \in M$$, если $$\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$$.

Открытым шаром с центром в точка $$x \in M$$ радиуса $$R>0$$ называется множество $$B(x,R) = \{y \in M| d(x,y) < R\}$$.

Множество $$G \subset M$$ называется открытым, если $$\forall x \in G \quad \exists B(x, R) \subset G$$.

Точка $$x \in M$$ называется предельной для множества $$F$$, если $$\{B(x, R) \backslash x\} \cap F \neq \varnothing~~\forall R>0$$.

Множество предельных точек множества $$F$$ обозначим через $$F^{\prime}$$.

Замыканием множества $$E$$ называется множество $$\bar{F}=F \cup F^{\prime}$$.

Множество $$F$$ называется замкнутым, если $$\bar{F}=F$$.

Теорема 1. Если $$G$$ - открытое, то $$M \backslash G$$ - замкнутое; если $$F$$ - замкнутое, то $$M \backslash F-$$ открытое.

Доказательство:

Первое - от противного: пусть $$x \in(M \backslash G)^{\prime}$$, но $$x \notin M \backslash G$$, тогда $$x \in G$$. Следовательно, $$\exists B(x, R) \subset G$$. Но тогда $$B(x, R) \cap(M \backslash G)=\varnothing$$, что означает, что точка $$x$$ не является предельной для множества $$M \backslash G$$ - противоречие.

Второе - от противного: пусть $$x \in M \backslash F$$, но нет ни одного шара с центром в точке $$x$$, содержащегося в $$M \backslash F$$, тогда $$\forall R>0\{B(x, R) \backslash x\} \cap F \neq \varnothing$$. Таким образом, точка $$x$$ является предельной для множества $$F$$, но не принадлежит ему - противоречие. $$\blacksquare$$

Теорема Банаха–Штейнгауза

Теорема 2. Пусть $$(X, d)$$ - это полное метрическое пространство и $$\left\{B_{n}\right\}_{n=1}^{+\infty}$$ - семейство замкнутых шаров, причём при всех $$n \in \mathbb{N}$$ $$B_{n+1} \subset \bar{B}_{n}$$ и радиусы шаров $$r_{n}$$ стремятся к $$0$$, тогда

\[ \bigcap_{n \in \mathbb{N}} B_{n}=\{a\} \]

где а - некоторая точка из $$X$$.

Доказательство:

Действительно, возьмём последовательность $$\left\{a_{n}\right\}$$ такую, что $$a_{n} \in B_{n}$$. Поскольку шары вложены и их радиусы стремятся к нулю, то эта последовательность $$\left\{a_{n}\right\}$$ фундаментальна.

Это следует из того, что для любого $$\varepsilon>0$$ найдётся такое натуральное $$N \in \mathbb{N}$$, что при $$n, m>N$$

\[ a_{n}, a_{m} \in B_{\min \{n, m\}}, \]

а радиус шара $$B_{\min \{n, m\}}$$ стремится к нулю при $$N \rightarrow+\infty$$.

Следовательно, в силу полноты $$(X, d)$$, последовательность $$\left\{a_{n}\right\}$$ сходится к точке $$a$$, которая, в силу замкнутости шаров $$B_{n}$$, принадлежит их пересечению.

Докажем, что пересечение этих шаров состоит в точности из одной точки. Для этого заметим, что расстояние между двумя точками $$x, y$$, лежащими в одном замкнутом шаре радиуса $$r$$, не превосходит $$2 r$$.

Действительно, если $$o-$$ центр шара, имеем

\[ d(x, y) \leqslant d(x, o)+d(o, y) \leqslant 2 r. \]

Следовательно, если пересечение всех шаров содержит точки $$a, b$$, то

\[ d(a, b) \leqslant 2 r_{n} \rightarrow 0, \]

откуда $$d(a, b)=0$$ и $$a=b$$.$$\blacksquare$$

Полнота метрического пространства

Определение: Метрическое пространство $$M$$ называется полным, если любая фундаментальная последовательность точек этого пространства является сходящейся. (То есть выполняется критерий Коши.)

Замечание 1: Последовательность точек $$\left\{x_n\right\}$$ в метрическом пространстве $$M$$ называется фундаментальной, если $$ \forall \varepsilon>0 \exists N=N(\varepsilon) \in \mathbb{N}: \forall n, m>N \Rightarrow d\left(x_n, x_m\right)<\varepsilon . $$

Замечание 2: Последовательность $$\left\{x_n\right\}$$ называется сходящейся к пределу $$x \in M$$, если $$ \forall \varepsilon>0 \exists N=N(\varepsilon) \in \mathbb{N}: \forall n>N d\left(x_n, x\right)<\varepsilon . $$ Обозначение: $$\lim _{n \rightarrow \infty} x_n=x$$.

Замечание 3: Из сходимости последовательности (существования предела) всегда следует её фундаментальность: $$ d\left(x_n, x_m\right) \leqslant d\left(x_n, x\right)+d\left(x, x_m\right)<\varepsilon, \text { при } n, m>N(\varepsilon / 2) . $$

Примеры 1: Рассмотрим пространство изолированных точек $$M$$ с дискретной метрикой: $$ d(x,y) = \left\{\begin{matrix} 1&x \ne y \\ 0&x =y \end{matrix}\right. $$

В этом пространстве любая фундаментальная последовательность является стационарной, начиная с некоторого номера: $$x_n \equiv$$ const, $$\forall n \geqslant N$$. Следовательно, она является сходящейся, и пространство является полным.


Примеры 2: Пространства $$\mathbb{R}, \mathbb{R}^n$$ являются полными. Это доказано в курсе математического анализа (критерий Коши сходимости последовательности).

Примеры 3: пространства $$C[a, b]$$ являются полными:

Пусть $$\left\{x_n(t)\right\}: x_n(t) \in C[a, b], \forall n \in \mathbb{N}, t \in[a, b]$$. Предположим, что последовательность $$\left\{x_n\right\}$$ является фундаментальной в $$C[a, b]$$ : $$ \forall \varepsilon>0 \exists N \in \mathbb{N}: \forall n, m \geqslant N \max _{t \in[a, b]}\left|x_n(t)-x_m(t)\right|<\varepsilon . $$

Используем критерий Коши равномерно сходимости функциональной последовательности. Следовательно, $$x_n(t) \stackrel{[a, b]}{\Longrightarrow} x(t)$$ для некоторой функции $$x(t), t \in[a, b]$$. Из математического анализа известно, что последовательность непрерывных функций равномерно сходится к непрерывной функции. Следовательно, $$x(t) \in C[a, b]$$(Сходимость в $$C[a, b]$$ - это равномерная сходимость).

Следовательно, последовательность $$\left\{x_n(t)\right\}$$ является сходящейся, и пространство $$C[a, b]-$$ полное метрическое.

Теорема Хаусдорфа о пополнении метрического пространства

Определение: Два метрических пространства $$\left(M_1, d_1\right)$$ и $$\left(M_2, d_2\right)$$ называются изометрическими$$\left(M_1 \sim M_2\right)$$, если существует взаимно однозначное соответствие между элементами этих пространств $$\varphi(\cdot): M_1 \rightarrow M_2$$, и $$ \forall x_1, y_1 \in M_1 \quad d_1\left(x_1, y_1\right)=d_2\left(\varphi\left(x_1\right), \varphi\left(y_1\right)\right) . $$

Теорема 3. Пусть $$M$$ - произвольное метрическое пространство. Тогда существует единственное (с точностью до изометрии) метрическое пространство $$\tilde{M}$$, которое является полным, $$M \sim M_0 \subset \tilde{M}, \bar{M}_0=\tilde{M}$$.

Доказательство:

Рассмотрим фундаментальные последовательности $$\left\{x_n\right\}$$ в метрическом пространстве $$M$$. Две последовательности $$\left\{x_n\right\}$$ и $$\left\{y_n\right\}$$ называются эквивалентными, если $$d\left(x_n, y_n\right) \rightarrow 0, n \rightarrow \infty$$.

Пусть $$\tilde{M}$$ - множество классов эквивалентности из эквивалентных между собой фундаментальных последовательностей. На $$\tilde{M}$$введём метрику $$\tilde{d}$$ : $$ \forall X, Y \in \tilde{M} \Rightarrow \tilde{d}(X, Y)=\lim _{n \rightarrow \infty} d\left(x_n, y_n\right), \text { где }\left\{x_n\right\} \in X,\left\{y_n\right\} \in Y . $$

Покажем, что существует предел $$\lim _{n \rightarrow \infty} d\left(x_n, y_n\right):$$ $$ d\left(x_n, y_n\right)-d\left(x_m, y_m\right) \leqslant d\left(x_n, x_m\right)+d\left(x_m, y_m\right)+d\left(y_m, y_n\right)-d\left(x_m, y_m\right)=d\left(x_n, x_m\right)+d\left(y_n, y_m\right) \rightarrow 0, n, m \rightarrow \infty \text {. } $$

Аналогично, $$d\left(x_m, y_m\right)-d\left(x_n, y_n\right) \leqslant d\left(x_n, x_m\right)+d\left(y_n, y_m\right) \rightarrow 0$$. Следовательно, числовая последовательность $$\left\{d\left(x_n, y_n\right)\right\}$$ является фундаментальной, а значит и сходящейся.