Преобразование Лапласа

Материал из sawiki
Перейти к навигации Перейти к поиску

Преобразование Лапласа — интегральное преобразование, связывающее функцию $$F(p)$$ комплексного переменного (изображение) с функцией $$f(t)$$ вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения. Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.

Определение

Прямое преобразование

Преобразованием Лапласа действительнозначной функции $$f(t)$$ называется функция $$F(p)$$ комплексной переменной такая, что

\begin{equation} F(p) = \int\limits^{+\infty}_0 f(t) e^{-pt} dt, \quad p \in \mathbb(C). \end{equation}


Правая часть этого выражения называется интегралом Лапласа.

Выясним, при каких условиях существует интеграл Лапласа для заданной функции $$f(t)$$. Будем рассматривать функцию $$f_\mu(t) = e^{-\mu t} f(t)$$, $$\mu \in \mathbb{R}$$. Пусть существуют константы $$A$$, $$\mu_0$$ такие, что $$|f(t)| \le Ae^{-\mu_0 t}$$ $$\forall t\ge T$$, то есть функция $$f(t)$$ возрастает не быстрее показательной функции. Тогда для любого $$\mu \ge \mu_0$$ $$\exists \int\limits_0^{+\infty} |e^{-\mu t} f(t)|dt < \infty$$. Поставим в соответствие функции $$f_\mu(t)$$ функцию $$F_\mu(t)$$, определяемую как прямое преобразование Фурье функции $$f_\mu(t)$$: $$F_\mu(t) = \int\limits_0^{+\infty} f_\mu(t) e^{-i\omega t} dt = \int\limits_0^{+\infty} f(t) e^{-\mu t} e^{-i\omega t} dt = \left\{\text{обозначим } p = \mu + i\omega\in \mathbb{C}\right\} = \int\limits_0^{+\infty} f(t) e^{-pt} dt \equiv F(p)$$.

Получаем следующие достаточные условия существования прямого преобразования Лапласа:

  1. $$ \exists A$$, $$\mu_0$$ такие, что $$|f(t)|\le Ae^{-\mu_0 t} \ \forall t\ge T $$
  2. интеграл $$\int\limits_0^{+\infty}|f(t) dt|$$ существует и конечен.

Обратное преобразование

Будем рассматривать физически реализуемую функцию $$\chi(t)f_\mu(t)$$, где функция $$\chi(t)$$ — функция Хевисайда: \[ \chi(t) = \left\{\begin{align*} 1,\ &t\ge0,\\ 0,\ &t<0. \end{align*}\right. \]

В этом случае $$t$$ может иметь смысл времени, поэтому получаем, что функция $$f(t)\chi(t)$$ задана только на положительной полуоси $$t\ge0$$.

Рассмотрим обратное преобразование Фурье от функции $$F_\mu(\omega)$$: \[ f(t) e^{-\mu t} \chi(t) = f_\mu(t) \chi(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} F_\mu(\omega) e^{i\omega t} dt = \frac{1}{2\pi} \int\limits_{-\infty}^{+\infty} F(p) e^{i\omega t} dt. \]

Сделаем замену $$p = \mu + i\omega$$. Тогда $$d\omega = \frac{dp}{i}$$, а верхний и нижний пределы интегрирования равны: $$\omega = +\infty \Rightarrow p = \mu + i\infty$$, $$\omega = -\infty \Rightarrow p = \mu - i\infty$$. Получаем:

\[ f(t) e^{-\mu t} \chi(t) = \frac{1}{2\pi i} e^{-\mu t} \int\limits_{\mu-i\infty}^{\mu+i\infty} F(p) e^{pt} dp \quad \forall \mu > \tilde{\mu}. \]

Домножив обе части равенства на $$e^{\mu t}$$, окончательно получим формулу обратного преобразования Лапласа:

\[ f(t)\chi(t) = \frac{1}{2\pi i} \int\limits_{\mu-i\infty}^{\mu+i\infty} F(p)e^{pt} dp. \]

Правая часть этого выражения называется формулой Меллина.

Теорема об области существовании изображения

Для всякого оригинала $$f(t)$$ изображение по Лапласу $$F(p)$$ определено в полуплоскости \(\mathrm{Re} p > \mu_0\) и является в этой области аналитической функцией.

Доказательство. Докажем, сначала, что интеграл Лапласа сходится абсолютно