Теория двойственности Фенхеля-Моро: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 36: Строка 36:
 
Докажем, что $$f^∗(x^∗) \gt -\infty$$ $$\forall x^∗ \in X$$. Возьмем $$x_0 \in \text{dom}$$ $$f \neq \emptyset$$. Тогда $$f^∗(x^∗) \ge \left\langle x_0, x∗\right\rangle − f(x_0) \gt -\infty$$, так как $$f(x_0) \lt +\infty$$. Остается доказать существование вектора $$y^∗ \in X$$, для которого $$f^∗(y^∗) \lt +\infty$$.
 
Докажем, что $$f^∗(x^∗) \gt -\infty$$ $$\forall x^∗ \in X$$. Возьмем $$x_0 \in \text{dom}$$ $$f \neq \emptyset$$. Тогда $$f^∗(x^∗) \ge \left\langle x_0, x∗\right\rangle − f(x_0) \gt -\infty$$, так как $$f(x_0) \lt +\infty$$. Остается доказать существование вектора $$y^∗ \in X$$, для которого $$f^∗(y^∗) \lt +\infty$$.
 
<br>
 
<br>
Очевидно, точка $$(x_0, f(x_0) − 1)$$ не принадлежит замкнутому выпуклому множеству $$\text{epi}$$ $$f$$. Следовательно, по теореме об отделимости ее можно строго отделить от выпуклого замкнутого множества $$\text{epi}$$ $$f$$. Поэтому существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что
+
Очевидно, точка $$(x_0, f(x_0) − 1)$$ не принадлежит замкнутому выпуклому множеству $$\text{epi}$$ $$f$$. Следовательно, по [https://sawiki.cs.msu.ru/index.php?title=Отделимость_множеств&action=edit&redlink=1 теореме об отделимости] ее можно строго отделить от выпуклого замкнутого множества $$\text{epi}$$ $$f$$. Поэтому существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что
 
$$\underset{(x,\alpha) \in \text{epi} f}{\text{sup}}\left\{ \beta\alpha + \left\langle y^*,x \right\rangle \right\} \lt \beta (f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle$$ $$\;\;$$ $$(*)$$.
 
$$\underset{(x,\alpha) \in \text{epi} f}{\text{sup}}\left\{ \beta\alpha + \left\langle y^*,x \right\rangle \right\} \lt \beta (f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle$$ $$\;\;$$ $$(*)$$.
 
<br>
 
<br>

Версия 16:24, 4 декабря 2022

Определения

Пусть $$X$$ — вещественное линейное пространство.
Через $$\overline{\mathbb{R}}$$ будем обозначать расширенную вещественную прямую, $$\overline{\mathbb{R}} = \mathbb{R} \cup \left\{ -\infty; +\infty \right\}$$.
Будем рассматривать функции $$f: X \to \overline{\mathbb{R}}$$.
С каждой такой функцией $$f$$ можно связать множества

$$\text{epi}$$ $$f = \left\{ \left( x,\alpha \right) \in X\times \mathbb{R} : f(x) \le \alpha\right\}$$,


$$\text{dom}$$ $$f = \left\{ x \in X : f(x) \lt +\infty \right\}$$,


называемые соответственно надграфиком функции $$f$$ и ее эффективным множеством.

Определение 1

Функция $$f$$ называется собственной, если $$\text{dom}$$ $$f \neq \emptyset$$ и $$f(x) \gt -\infty$$ $$\forall x$$.

Определение 2

Функция $$f$$ называется выпуклой, если ее надграфик $$\text{epi}$$ $$f$$ является выпуклым множеством.

Определение 3

Функция $$f$$ называется замкнутой, если ее надграфик $$\text{epi}$$ $$f$$ замкнут.

Далее предполагаем, что $$X$$ — гильбертово пространство.

Определение 4

Функцией, сопряженной к $$f$$, называется функция, определенная формулой $$f^*(x^*) = \underset{x \in X}{\text{sup}}\left( \left\langle x^*,x \right\rangle - f(x) \right)$$.

Из определения сопряженной функции вытекает неравенство Юнга-Фенхеля $$f^*(x^*) + f(x) \ge \left\langle x, x^* \right\rangle \; \forall x,x^* \in X$$.
Вторая сопряженная функция $$f^{**}$$ определяется по формуле $$f^{**}=(f^*)^*$$.

Теорема Фенхеля-Моро

Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^{**} = f$$.

Вспомогательная лемма

Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^*$$ — также собственная функция.

Доказательство

Докажем, что $$f^∗(x^∗) \gt -\infty$$ $$\forall x^∗ \in X$$. Возьмем $$x_0 \in \text{dom}$$ $$f \neq \emptyset$$. Тогда $$f^∗(x^∗) \ge \left\langle x_0, x∗\right\rangle − f(x_0) \gt -\infty$$, так как $$f(x_0) \lt +\infty$$. Остается доказать существование вектора $$y^∗ \in X$$, для которого $$f^∗(y^∗) \lt +\infty$$.
Очевидно, точка $$(x_0, f(x_0) − 1)$$ не принадлежит замкнутому выпуклому множеству $$\text{epi}$$ $$f$$. Следовательно, по теореме об отделимости ее можно строго отделить от выпуклого замкнутого множества $$\text{epi}$$ $$f$$. Поэтому существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что $$\underset{(x,\alpha) \in \text{epi} f}{\text{sup}}\left\{ \beta\alpha + \left\langle y^*,x \right\rangle \right\} \lt \beta (f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle$$ $$\;\;$$ $$(*)$$.
Докажем, что $$\beta \lt 0$$. Действительно, предположим обратное. Случай $$\beta \gt 0$$ невозможен, так как $$(x_0, \alpha) \in \text{epi}$$ $$f\;$$ $$\forall \alpha \ge f(x_0) \neq +\infty$$ и, значит, при $$\beta \gt 0$$ имеет место $$\underset{(x_0,\alpha) \in \text{epi} f}{\text{sup}}\beta \alpha = +\infty$$, что противоречит неравенству $$(*)$$.
Пусть теперь $$\beta = 0$$. Тогда $$\underset{(x,\alpha) \in \text{epi} f}{\text{sup}} \left\langle y^*, x \right\rangle \lt \left\langle y^*, x_0 \right\rangle$$, хотя $$(x_0, f(x_0)) \in \text{epi}$$ $$f$$ $$\implies \underset{(x,\alpha) \in \text{epi} f}{\text{sup}} \left\langle y^*, x \right\rangle \ge \left\langle y^*, x_0 \right\rangle$$.
Полученное противоречие доказывает, что $$\beta \lt 0$$. Поэтому, в силу положительной однородности неравенства $$(*)$$ по переменной $$(y^∗, \beta)$$, не теряя общности, будем считать, что $$\beta = -1$$.
В силу $$(*)$$ имеем $$f^*(y^*) = \underset{x}{\text{sup}} \left\{ -f(x) + \left\langle y^*,x \right\rangle \right\} = \underset{(x,\alpha) \in \text{epi} f}{\text{sup}} \left\{ -\alpha + \left\langle y^*,x \right\rangle \right\} \lt -(f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle \implies f^*(y^*) \lt +\infty$$. Значит, функция $$f^*$$ является собственной.$$\;\;$$ ∎

Доказательство теоремы Фенхеля-Моро

Список литературы

  1. Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2014.