Теория двойственности Фенхеля-Моро: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 1: Строка 1:
 
== Определения ==
 
== Определения ==
Пусть $$X$$ — вещественное линейное пространство.
+
Пусть $$X$$ — [https://ru.wikipedia.org/wiki/Гильбертово_пространство гильбертово] пространство.
 
<br>
 
<br>
 
Через $$\overline{\mathbb{R}}$$ будем обозначать расширенную вещественную прямую, $$\overline{\mathbb{R}} = \mathbb{R} \cup \left\{ -\infty; +\infty  \right\}$$.
 
Через $$\overline{\mathbb{R}}$$ будем обозначать расширенную вещественную прямую, $$\overline{\mathbb{R}} = \mathbb{R} \cup \left\{ -\infty; +\infty  \right\}$$.
Строка 8: Строка 8:
 
С каждой такой функцией $$f$$ можно связать множества
 
С каждой такой функцией $$f$$ можно связать множества
 
\[
 
\[
\text{epi} \; f = \left\{ \left( x,\alpha \right) \in X\times \mathbb{R} : f(x) \le \alpha\right\},
+
\text{epi} \, f = \left\{ \left( x,\alpha \right) \in X\times \mathbb{R} : f(x) \leqslant \alpha\right\},
 
\]
 
\]
 
\[
 
\[
\text{dom} \; f = \left\{ x \in X : f(x) \lt +\infty  \right\},
+
\text{dom} \, f = \left\{ x \in X : f(x) \lt +\infty  \right\},
 
\]
 
\]
 
называемые соответственно '''надграфиком функции''' $$f$$ и ее '''эффективным множеством'''.
 
называемые соответственно '''надграфиком функции''' $$f$$ и ее '''эффективным множеством'''.
==== Определение 1 ====
 
Функция $$f$$ называется '''собственной''', если $$\text{dom} \; f \neq \emptyset$$ и $$f(x) \gt -\infty \; \forall x$$.
 
==== Определение 2 ====
 
Функция $$f$$ называется '''выпуклой''', если ее надграфик $$\text{epi} \; f$$ является выпуклым множеством.
 
==== Определение 3 ====
 
Функция $$f$$ называется '''замкнутой''', если ее надграфик $$\text{epi} \; f$$ замкнут.
 
 
<br>
 
<br>
 +
'''Определение 1.'''
 +
Функция $$f$$ называется '''собственной''', если $$\text{dom} \, f \neq \varnothing$$ и $$f(x) \gt -\infty \; \forall x$$.
 
<br>
 
<br>
Далее предполагаем, что $$X$$ — гильбертово пространство.
+
'''Определение 2.'''
==== Определение 4 ====
+
Функция $$f$$ называется '''выпуклой''', если ее надграфик $$\text{epi} \, f$$ является выпуклым множеством.
Функцией, '''сопряженной''' к $$f$$, называется функция, определенная формулой $$f^*(x^*) = \underset{x \in X}{\text{sup}}\left( \left\langle x^*,x \right\rangle - f(x) \right)$$.
 
 
<br>
 
<br>
 +
'''Определение 3.'''
 +
Функция $$f$$ называется '''замкнутой''', если ее надграфик $$\text{epi} \, f$$ замкнут.
 +
<br>
 +
'''Определение 4.'''
 +
Функцией, '''сопряженной''' к $$f$$, называется функция, определенная формулой
 +
\[
 +
f^*(x^*) = \underset{x \in X}{\text{sup}}\left( \left\langle x^*,x \right\rangle - f(x) \right).
 +
\]
 
<br>
 
<br>
 
Из определения сопряженной функции вытекает '''неравенство Юнга-Фенхеля'''
 
Из определения сопряженной функции вытекает '''неравенство Юнга-Фенхеля'''
 
\[
 
\[
f^*(x^*) + f(x) \ge \left\langle x, x^* \right\rangle \; \forall x,x^* \in X.
+
f^*(x^*) + f(x) \geqslant \left\langle x, x^* \right\rangle \; \forall x,x^* \in X.
 
\]
 
\]
 
Вторая сопряженная функция $$f^{**}$$ определяется по формуле $$f^{**}=(f^*)^*$$.
 
Вторая сопряженная функция $$f^{**}$$ определяется по формуле $$f^{**}=(f^*)^*$$.
== Теорема Фенхеля-Моро ==
 
Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^{**} = f$$.
 
 
== Вспомогательная лемма ==
 
== Вспомогательная лемма ==
 
Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^*$$ — также собственная функция.
 
Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^*$$ — также собственная функция.
 
==== Доказательство ====
 
==== Доказательство ====
Докажем, что $$f^∗(x^∗) \gt -\infty$$ $$\forall x^∗ \in X$$. Возьмем $$x_0 \in \text{dom}$$ $$f \neq \emptyset$$. Тогда $$f^∗(x^∗) \ge \left\langle x_0, x∗\right\rangle − f(x_0) \gt -\infty$$, так как $$f(x_0) \lt +\infty$$.
+
Докажем, что $$f^∗(x^∗) \gt -\infty$$ $$\forall x^∗ \in X$$. Возьмем $$x_0 \in \text{dom} \, f \neq \varnothing$$. Тогда $$f^∗(x^∗) \geqslant \left\langle x_0, x^∗\right\rangle − f(x_0) \gt -\infty$$, так как $$f(x_0) \lt +\infty$$.
 
<br>
 
<br>
 
Остается доказать существование вектора $$y^∗ \in X$$, для которого $$f^∗(y^∗) \lt +\infty$$.
 
Остается доказать существование вектора $$y^∗ \in X$$, для которого $$f^∗(y^∗) \lt +\infty$$.
 
<br>
 
<br>
Очевидно, точка $$(x_0, f(x_0) − 1)$$ не принадлежит замкнутому выпуклому множеству $$\text{epi}$$ $$f$$. Следовательно, по [https://sawiki.cs.msu.ru/index.php?title=Отделимость_множеств&action=edit&redlink=1 теореме об отделимости] ее можно строго отделить от выпуклого замкнутого множества $$\text{epi}$$ $$f$$. Поэтому существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что
+
Очевидно, точка $$(x_0, f(x_0) − 1)$$ не принадлежит замкнутому выпуклому множеству $$\text{epi} \, f$$. Следовательно, по [https://sawiki.cs.msu.ru/index.php?title=Отделимость_множеств&action=edit&redlink=1 теореме об отделимости] ее можно строго отделить от выпуклого замкнутого множества $$\text{epi} \, f$$. Поэтому существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что
 
\[
 
\[
\underset{(x,\alpha) \in \text{epi} f}{\text{sup}}\left\{ \beta\alpha + \left\langle y^*,x \right\rangle \right\} \lt \beta (f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle. \;\;\; (*)
+
\underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}}\left\{ \beta\alpha + \left\langle y^*,x \right\rangle \right\} \lt \beta (f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle. \;\;\; \textbf{(1)}
 
\]
 
\]
Докажем, что $$\beta \lt 0$$. Действительно, предположим обратное. Случай $$\beta \gt 0$$ невозможен, так как $$(x_0, \alpha) \in \text{epi}$$ $$f\;$$ $$\forall \alpha
+
Докажем, что $$\beta \lt 0$$. Действительно, предположим обратное. Случай $$\beta \gt 0$$ невозможен, так как $$(x_0, \alpha) \in \text{epi} \, f\;$$ $$\forall \alpha
\ge f(x_0) \neq +\infty$$ и, значит, при $$\beta \gt 0$$ имеет место $$\underset{(x_0,\alpha) \in \text{epi} f}{\text{sup}}\beta \alpha = +\infty$$, что противоречит неравенству $$(*)$$.
+
\geqslant f(x_0) \neq +\infty$$ и, значит, при $$\beta \gt 0$$ имеет место $$\underset{(x_0,\alpha) \in \text{epi} \, f}{\text{sup}}\beta \alpha = +\infty$$, что противоречит неравенству $$(1)$$.
 
<br>
 
<br>
 
Пусть теперь $$\beta = 0$$. Тогда  
 
Пусть теперь $$\beta = 0$$. Тогда  
 
\[
 
\[
\underset{(x,\alpha) \in \text{epi} f}{\text{sup}} \left\langle y^*, x \right\rangle \lt \left\langle y^*, x_0 \right\rangle,
+
\underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}} \left\langle y^*, x \right\rangle \lt \left\langle y^*, x_0 \right\rangle,
 
\] хотя
 
\] хотя
 
\[
 
\[
(x_0, f(x_0)) \in \text{epi} f \implies \underset{(x,\alpha) \in \text{epi} f}{\text{sup}} \left\langle y^*, x \right\rangle \ge \left\langle y^*, x_0 \right\rangle.
+
(x_0, f(x_0)) \in \text{epi} \, f \implies \underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}} \left\langle y^*, x \right\rangle \geqslant \left\langle y^*, x_0 \right\rangle.
 
\]
 
\]
Полученное противоречие доказывает, что $$\beta \lt 0$$. Поэтому, в силу положительной однородности неравенства $$(*)$$ по переменной $$(y^∗, \beta)$$,  
+
Полученное противоречие доказывает, что $$\beta \lt 0$$. Поэтому, в силу положительной однородности неравенства $$(1)$$ по переменной $$(y^∗, \beta)$$,  
 
не теряя общности, будем считать, что $$\beta = -1$$.
 
не теряя общности, будем считать, что $$\beta = -1$$.
 
<br>
 
<br>
В силу $$(*)$$ имеем  
+
В силу $$(1)$$ имеем  
 
\[
 
\[
f^*(y^*) = \underset{x}{\text{sup}} \left\{ -f(x) + \left\langle y^*,x \right\rangle \right\} = \underset{(x,\alpha) \in \text{epi} f}{\text{sup}} \left\{ -\alpha + \left\langle y^*,x \right\rangle \right\} \lt -(f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle \implies f^*(y^*) \lt +\infty.
+
f^*(y^*) = \underset{x}{\text{sup}} \left\{ -f(x) + \left\langle y^*,x \right\rangle \right\} = \underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}} \left\{ -\alpha + \left\langle y^*,x \right\rangle \right\} \lt -(f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle \implies f^*(y^*) \lt +\infty.
 
\]
 
\]
Значит, функция $$f^*$$ является собственной.$$\;\;$$
+
Значит, функция $$f^*$$ является собственной.$$\;\;\blacksquare$$
== Доказательство теоремы Фенхеля-Моро ==
+
== Теорема Фенхеля-Моро ==
Покажем, что $$f^{**} \le f$$. В силу неравенства Юнга-Фенхеля $$\forall x \in X$$ имеем  
+
Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^{**} = f$$.
 +
==== Доказательство ====
 +
Покажем, что $$f^{**} \leqslant f$$. В силу неравенства Юнга-Фенхеля $$\forall x \in X$$ имеем  
 
\[
 
\[
f(x) \ge \left\langle x, x^* \right\rangle - f^*(x^*) \; \forall x^* \in X \implies f(x) \ge \underset{x^*}{\text{sup}}\left\{ \left\langle x, x^* \right\rangle -  f^*(x^*) \right\} = f^{**}(x).
+
f(x) \geqslant \left\langle x, x^* \right\rangle - f^*(x^*) \; \forall x^* \in X \implies f(x) \geqslant \underset{x^*}{\text{sup}}\left\{ \left\langle x, x^* \right\rangle -  f^*(x^*) \right\} = f^{**}(x).
 
\]
 
\]
Остается показать, что $$f^{**} \ge f$$.
+
Остается показать, что $$f^{**} \geqslant f$$.
Предположим противное. Тогда существует $$x_0 \in X$$, для которого $$f^{∗∗}(x_0) \lt f(x_0)$$. Поэтому точка $$(x_0, f^{∗∗}(x_0))$$ строго отделима от выпуклого замкнутого множества $$\text{epi} \: f$$. Значит, существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что
+
Предположим противное. Тогда существует $$x_0 \in X$$, для которого $$f^{∗∗}(x_0) \lt f(x_0)$$. Поэтому точка $$(x_0, f^{∗∗}(x_0))$$ строго отделима от выпуклого замкнутого множества $$\text{epi} \, f$$. Значит, существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что
 
\[
 
\[
\beta f^{**}(x_0) + \left\langle y^*,x_0 \right\rangle \gt \underset{(y,\alpha) \in \text{epi} f}{\text{sup}}\left( \beta\alpha + \left\langle y^*,y \right\rangle \right). \;\;\; ()
+
\beta f^{**}(x_0) + \left\langle y^*,x_0 \right\rangle \gt \underset{(y,\alpha) \in \text{epi} \, f}{\text{sup}}\left( \beta\alpha + \left\langle y^*,y \right\rangle \right). \;\;\; \textbf{(2)}
 
\]
 
\]
Докажем, что $$\beta \lt 0$$. Действительно, случай $$\beta \gt 0$$ невозможен, что обосновывается так же, как и при доказательстве вспомогательной леммы, с учетом того, что $$\text{dom} \: f \neq \emptyset$$.
+
Докажем, что $$\beta \lt 0$$. Действительно, случай $$\beta \gt 0$$ невозможен, что обосновывается так же, как и при доказательстве вспомогательной леммы, с учетом того, что $$\text{dom} \, f \neq \varnothing$$.
 
<br>
 
<br>
 
Пусть теперь $$\beta = 0$$. Тогда  
 
Пусть теперь $$\beta = 0$$. Тогда  
 
\[
 
\[
\gamma = \left\langle y^*, x_0 \right\rangle - \underset{y \in \text{dom} f}{\text{sup}} \left\langle y^*, y \right\rangle \gt 0.
+
\gamma = \left\langle y^*, x_0 \right\rangle - \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle \gt 0.
 
\]
 
\]
В силу леммы функция $$f^*$$ является собственной. Поэтому существует $$y^*_1 \in \text{dom} \: f^* \neq \emptyset$$. Для $$t \gt 0$$ имеем
+
В силу леммы функция $$f^*$$ является собственной. Поэтому существует $$y^*_1 \in \text{dom} \, f^* \neq \varnothing$$. Для $$t \gt 0$$ имеем
 
\[
 
\[
f^*(y^*_1+ty^*) = \underset{y \in \text{dom} f}{\text{sup}} \left( \left\langle y^*_1 + ty^*, y \right\rangle - f(y) \right) \le \underset{y \in \text{dom} f}{\text{sup}} \left( \left\langle y^*_1, y \right\rangle - f(y) \right) + t \underset{y \in \text{dom} f}{\text{sup}} \left\langle y^*, y \right\rangle = f^*(y^*_1) + t \underset{y \in \text{dom} f}{\text{sup}} \left\langle y^*, y \right\rangle.
+
f^*(y^*_1+ty^*) = \underset{y \in \text{dom} \, f}{\text{sup}} \left( \left\langle y^*_1 + ty^*, y \right\rangle - f(y) \right) \leqslant \underset{y \in \text{dom} \, f}{\text{sup}} \left( \left\langle y^*_1, y \right\rangle - f(y) \right) + t \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle = f^*(y^*_1) + t \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle.
 
\]
 
\]
 
Отсюда в силу неравенства Юнга-Фенхеля для функции $$f^*$$ вытекает
 
Отсюда в силу неравенства Юнга-Фенхеля для функции $$f^*$$ вытекает
 
\[
 
\[
f^{**}(x_0) \ge \left\langle y^*_1 + ty^*, x_0 \right\rangle - f^*(y^*_1 + ty^*) \ge \left\langle y^*_1, x_0 \right\rangle + t \left\langle y^*, x_0 \right\rangle - f^*(y^*_1) - t \underset{y \in \text{dom} f}{\text{sup}} \left\langle y^*, y \right\rangle = \left\langle y^*_1, x_0 \right\rangle - f^*(y^*_1) + t\gamma, \;\forall t\gt 0.
+
f^{**}(x_0) \geqslant \left\langle y^*_1 + ty^*, x_0 \right\rangle - f^*(y^*_1 + ty^*) \geqslant \left\langle y^*_1, x_0 \right\rangle + t \left\langle y^*, x_0 \right\rangle - f^*(y^*_1) - t \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle = \left\langle y^*_1, x_0 \right\rangle - f^*(y^*_1) + t\gamma, \;\forall t\gt 0.
 
\]
 
\]
 
Получили противоречие, так как $$\gamma \gt 0$$  и, значит, при больших $$t$$ значение $$t\gamma$$ может быть сделано как угодно большим и, следовательно, при достаточно больших $$t \gt 0$$ последнее неравенство выполняться не может.
 
Получили противоречие, так как $$\gamma \gt 0$$  и, значит, при больших $$t$$ значение $$t\gamma$$ может быть сделано как угодно большим и, следовательно, при достаточно больших $$t \gt 0$$ последнее неравенство выполняться не может.
 
<br>
 
<br>
Таким образом, доказано, что $$\beta \lt 0$$; значит, не теряя общности рассуждений, будем считать, что $$\beta = -1$$. В силу неравенства $$()$$ имеем
+
Таким образом, доказано, что $$\beta \lt 0$$; значит, не теряя общности рассуждений, будем считать, что $$\beta = -1$$. В силу неравенства $$(2)$$ имеем
 
\[
 
\[
-f^{**}(x_0) + \left\langle y^*, x_0 \right\rangle \gt \underset{y \in \text{dom} f}{\text{sup}} \left( -f(y) + \left\langle y^*,y \right\rangle\right) = f^*(y^*),
+
-f^{**}(x_0) + \left\langle y^*, x_0 \right\rangle \gt \underset{y \in \text{dom} \, f}{\text{sup}} \left( -f(y) + \left\langle y^*,y \right\rangle\right) = f^*(y^*),
 
\]
 
\]
 
откуда  
 
откуда  
Строка 97: Строка 100:
 
\left\langle y^*, x_0 \right\rangle \gt f^*(y^*) + f^{**}(x_0),
 
\left\langle y^*, x_0 \right\rangle \gt f^*(y^*) + f^{**}(x_0),
 
\]
 
\]
что противоречит неравенству Юнга–Фенхеля для функции $$f^∗$$. Полученное противоречие доказывает, что $$f^{**} \ge f$$ и, значит, $$f^{∗∗} = f$$. $$\;\;$$
+
что противоречит неравенству Юнга–Фенхеля для функции $$f^∗$$. Полученное противоречие доказывает, что $$f^{**} \geqslant f$$ и, значит, $$f^{∗∗} = f$$. $$\;\;\blacksquare$$
 
== Список литературы ==
 
== Список литературы ==
 
# Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2014.
 
# Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2014.

Версия 19:33, 6 декабря 2022

Определения

Пусть $$X$$ — гильбертово пространство.
Через $$\overline{\mathbb{R}}$$ будем обозначать расширенную вещественную прямую, $$\overline{\mathbb{R}} = \mathbb{R} \cup \left\{ -\infty; +\infty \right\}$$.
Будем рассматривать функции $$f: X \to \overline{\mathbb{R}}$$.
С каждой такой функцией $$f$$ можно связать множества \[ \text{epi} \, f = \left\{ \left( x,\alpha \right) \in X\times \mathbb{R} : f(x) \leqslant \alpha\right\}, \] \[ \text{dom} \, f = \left\{ x \in X : f(x) \lt +\infty \right\}, \] называемые соответственно надграфиком функции $$f$$ и ее эффективным множеством.
Определение 1. Функция $$f$$ называется собственной, если $$\text{dom} \, f \neq \varnothing$$ и $$f(x) \gt -\infty \; \forall x$$.
Определение 2. Функция $$f$$ называется выпуклой, если ее надграфик $$\text{epi} \, f$$ является выпуклым множеством.
Определение 3. Функция $$f$$ называется замкнутой, если ее надграфик $$\text{epi} \, f$$ замкнут.
Определение 4. Функцией, сопряженной к $$f$$, называется функция, определенная формулой \[ f^*(x^*) = \underset{x \in X}{\text{sup}}\left( \left\langle x^*,x \right\rangle - f(x) \right). \]
Из определения сопряженной функции вытекает неравенство Юнга-Фенхеля \[ f^*(x^*) + f(x) \geqslant \left\langle x, x^* \right\rangle \; \forall x,x^* \in X. \] Вторая сопряженная функция $$f^{**}$$ определяется по формуле $$f^{**}=(f^*)^*$$.

Вспомогательная лемма

Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^*$$ — также собственная функция.

Доказательство

Докажем, что $$f^∗(x^∗) \gt -\infty$$ $$\forall x^∗ \in X$$. Возьмем $$x_0 \in \text{dom} \, f \neq \varnothing$$. Тогда $$f^∗(x^∗) \geqslant \left\langle x_0, x^∗\right\rangle − f(x_0) \gt -\infty$$, так как $$f(x_0) \lt +\infty$$.
Остается доказать существование вектора $$y^∗ \in X$$, для которого $$f^∗(y^∗) \lt +\infty$$.
Очевидно, точка $$(x_0, f(x_0) − 1)$$ не принадлежит замкнутому выпуклому множеству $$\text{epi} \, f$$. Следовательно, по теореме об отделимости ее можно строго отделить от выпуклого замкнутого множества $$\text{epi} \, f$$. Поэтому существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что \[ \underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}}\left\{ \beta\alpha + \left\langle y^*,x \right\rangle \right\} \lt \beta (f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle. \;\;\; \textbf{(1)} \] Докажем, что $$\beta \lt 0$$. Действительно, предположим обратное. Случай $$\beta \gt 0$$ невозможен, так как $$(x_0, \alpha) \in \text{epi} \, f\;$$ $$\forall \alpha \geqslant f(x_0) \neq +\infty$$ и, значит, при $$\beta \gt 0$$ имеет место $$\underset{(x_0,\alpha) \in \text{epi} \, f}{\text{sup}}\beta \alpha = +\infty$$, что противоречит неравенству $$(1)$$.
Пусть теперь $$\beta = 0$$. Тогда \[ \underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}} \left\langle y^*, x \right\rangle \lt \left\langle y^*, x_0 \right\rangle, \] хотя \[ (x_0, f(x_0)) \in \text{epi} \, f \implies \underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}} \left\langle y^*, x \right\rangle \geqslant \left\langle y^*, x_0 \right\rangle. \] Полученное противоречие доказывает, что $$\beta \lt 0$$. Поэтому, в силу положительной однородности неравенства $$(1)$$ по переменной $$(y^∗, \beta)$$, не теряя общности, будем считать, что $$\beta = -1$$.
В силу $$(1)$$ имеем \[ f^*(y^*) = \underset{x}{\text{sup}} \left\{ -f(x) + \left\langle y^*,x \right\rangle \right\} = \underset{(x,\alpha) \in \text{epi} \, f}{\text{sup}} \left\{ -\alpha + \left\langle y^*,x \right\rangle \right\} \lt -(f(x_0) - 1) + \left\langle y^*, x_0 \right\rangle \implies f^*(y^*) \lt +\infty. \] Значит, функция $$f^*$$ является собственной.$$\;\;\blacksquare$$

Теорема Фенхеля-Моро

Пусть функция $$f$$ — выпуклая, замкнутая, собственная. Тогда $$f^{**} = f$$.

Доказательство

Покажем, что $$f^{**} \leqslant f$$. В силу неравенства Юнга-Фенхеля $$\forall x \in X$$ имеем \[ f(x) \geqslant \left\langle x, x^* \right\rangle - f^*(x^*) \; \forall x^* \in X \implies f(x) \geqslant \underset{x^*}{\text{sup}}\left\{ \left\langle x, x^* \right\rangle - f^*(x^*) \right\} = f^{**}(x). \] Остается показать, что $$f^{**} \geqslant f$$. Предположим противное. Тогда существует $$x_0 \in X$$, для которого $$f^{∗∗}(x_0) \lt f(x_0)$$. Поэтому точка $$(x_0, f^{∗∗}(x_0))$$ строго отделима от выпуклого замкнутого множества $$\text{epi} \, f$$. Значит, существуют $$y^∗ \in X$$ и $$\beta \in \mathbb{R}$$ такие, что \[ \beta f^{**}(x_0) + \left\langle y^*,x_0 \right\rangle \gt \underset{(y,\alpha) \in \text{epi} \, f}{\text{sup}}\left( \beta\alpha + \left\langle y^*,y \right\rangle \right). \;\;\; \textbf{(2)} \] Докажем, что $$\beta \lt 0$$. Действительно, случай $$\beta \gt 0$$ невозможен, что обосновывается так же, как и при доказательстве вспомогательной леммы, с учетом того, что $$\text{dom} \, f \neq \varnothing$$.
Пусть теперь $$\beta = 0$$. Тогда \[ \gamma = \left\langle y^*, x_0 \right\rangle - \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle \gt 0. \] В силу леммы функция $$f^*$$ является собственной. Поэтому существует $$y^*_1 \in \text{dom} \, f^* \neq \varnothing$$. Для $$t \gt 0$$ имеем \[ f^*(y^*_1+ty^*) = \underset{y \in \text{dom} \, f}{\text{sup}} \left( \left\langle y^*_1 + ty^*, y \right\rangle - f(y) \right) \leqslant \underset{y \in \text{dom} \, f}{\text{sup}} \left( \left\langle y^*_1, y \right\rangle - f(y) \right) + t \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle = f^*(y^*_1) + t \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle. \] Отсюда в силу неравенства Юнга-Фенхеля для функции $$f^*$$ вытекает \[ f^{**}(x_0) \geqslant \left\langle y^*_1 + ty^*, x_0 \right\rangle - f^*(y^*_1 + ty^*) \geqslant \left\langle y^*_1, x_0 \right\rangle + t \left\langle y^*, x_0 \right\rangle - f^*(y^*_1) - t \underset{y \in \text{dom} \, f}{\text{sup}} \left\langle y^*, y \right\rangle = \left\langle y^*_1, x_0 \right\rangle - f^*(y^*_1) + t\gamma, \;\forall t\gt 0. \] Получили противоречие, так как $$\gamma \gt 0$$ и, значит, при больших $$t$$ значение $$t\gamma$$ может быть сделано как угодно большим и, следовательно, при достаточно больших $$t \gt 0$$ последнее неравенство выполняться не может.
Таким образом, доказано, что $$\beta \lt 0$$; значит, не теряя общности рассуждений, будем считать, что $$\beta = -1$$. В силу неравенства $$(2)$$ имеем \[ -f^{**}(x_0) + \left\langle y^*, x_0 \right\rangle \gt \underset{y \in \text{dom} \, f}{\text{sup}} \left( -f(y) + \left\langle y^*,y \right\rangle\right) = f^*(y^*), \] откуда \[ \left\langle y^*, x_0 \right\rangle \gt f^*(y^*) + f^{**}(x_0), \] что противоречит неравенству Юнга–Фенхеля для функции $$f^∗$$. Полученное противоречие доказывает, что $$f^{**} \geqslant f$$ и, значит, $$f^{∗∗} = f$$. $$\;\;\blacksquare$$

Список литературы

  1. Арутюнов А. В. "Лекции по выпуклому и многозначному анализу", М.: ФИЗМАТЛИТ, 2014.