Теореме(о неравенстве Минковского для интегралов)
Теорема (о неравенстве Минковского для интегралов)
Для измеримых функций \(f, g \in L_p(X,\mu)\), где \(p \geqslant 1\), справедливо неравенство:
\[\|f + g\|_{L_p} \leqslant \|f\|_{L_p} + \|g\|_{L_p}\]
то есть:
\[\left(\int\limits_X |f(x) + g(x)|^p d\mu\right)^{1/p} \leqslant \left(\int\limits_X |f(x)|^p d\mu\right)^{1/p} + \left(\int\limits_X |g(x)|^p d\mu\right)^{1/p}\]
Замечание. Неравенство Минковского является аналогом неравенства треугольника для \(L_p\)-норм и показывает, что пространство \(L_p\) является нормированным.
Доказательство.
Сначала докажем неравенство:
\[|f + g|^p \leqslant (|f| + |g|)^p \leqslant (2\max\{|f|, |g|\})^p \leqslant 2^p(|f|^p + |g|^p)\]
Следовательно, \(|f + g|^p\) интегрируема, а значит \(f + g \in L_p(X, \mu)\).
\[\|f + g\|^p_{L_p} = \int\limits_X |f + g|^p d\mu \leqslant \int\limits_X |f + g|^{p-1}(|f| + |g|)d\mu = \int\limits_X |f| \cdot |f + g|^{p-1}d\mu + \int\limits_X |g| \cdot |f + g|^{p-1}d\mu\]
Применяя неравенство Гёльдера с показателями \(p\) и \(q\), где \(\frac{1}{p} + \frac{1}{q} = 1\), получаем:
\[\|f + g\|^p_{L_p} \leqslant \|f\|_{L_p} \cdot \left(\int\limits_X |f + g|^{(p-1)q}d\mu\right)^{1/q} + \|g\|_{L_p} \cdot \left(\int\limits_X |f + g|^{(p-1)q}d\mu\right)^{1/q}\]
Поскольку \((p-1)q = p\), имеем:
\[\|f + g\|^p_{L_p} \leqslant \|f\|_{L_p} \cdot \|f + g\|^{p/q}_{L_p} + \|g\|_{L_p} \cdot \|f + g\|^{p/q}_{L_p}\]
\[\Rightarrow \|f + g\|^{p-p/q}_{L_p} = \|f + g\|_{L_p} \leqslant \|f\|_{L_p} + \|g\|_{L_p}\]
Что и требовалось доказать.