Логистическое уравнение и его свойства: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
 
(не показаны 94 промежуточные версии этого же участника)
Строка 1: Строка 1:
Логистическое уравнение - уравнение, описывающее численность изолированной популяции в момент времени $$t$$ и имеющее вид
+
Логистическое уравнение уравнение, описывающее численность изолированной популяции в момент времени $$t$$ и имеющее вид
 +
\begin{equation}
 +
\label{eq1}
 +
\dfrac{dN}{dt} = rN \left( 1 - \dfrac{N}{K} \right) ,
 +
\end{equation}
  
\[ \dfrac{dN}{dt} = rN \left( 1 - \dfrac{N}{K} \right) , \]
+
где $$r, K$$ положительные параметры модели.
 
 
где $$r, K$$ положительные параметры модели.
 
  
 
== История возникновения ==
 
== История возникновения ==
Пусть $$ N(t) $$ — численность изолированной популяции в момент времени $$ t $$. Скорость её изменения может быть представлена в следующем виде
+
Пусть $$ N(t) $$ — численность изолированной популяции в момент времени $$ t $$. Скорость её изменения может быть представлена в следующем виде
  
 
\[ \dot N = \text{рождаемость} - \text{смертность} + \text{миграция} . \]
 
\[ \dot N = \text{рождаемость} - \text{смертность} + \text{миграция} . \]
Строка 18: Строка 20:
 
\[ \dot N = N \cdot f(N) , \]
 
\[ \dot N = N \cdot f(N) , \]
  
где $$ f(N) $$ — коэффициент скорости роста популяции. Разложим $$ F(N) $$ в ряд [https://ru.wikipedia.org/wiki/Ряд_Тейлора Тейлора] в окрестности нуля и отбросим все члены, кроме первых двух. Получим
+
где $$ f(N) $$ — коэффициент скорости роста популяции. Разложим $$ f(N) $$ в [https://ru.wikipedia.org/wiki/Ряд_Тейлора ряд Тейлора] в окрестности нуля и отбросим все члены, кроме первых двух. Получим
  
\[ \dot N = N(a + bN), \]
+
\[ \dot N = N(d + eN), \]
  
где $$ a,b $$ — некоторые постоянные, причем естественно предположить, что $$ a > 0, \ b < 0 $$. Именно таким образом [https://ru.wikipedia.org/wiki/Лотка,_Альфред_Джеймс Альфред Лотка] (Alfred Lotka, 1880–1949, один из создателей математической биологии) пришел к уравнению, которое стало известно
+
где $$ d,e $$ — некоторые постоянные, причем естественно предположить, что $$ d > 0, \ e < 0 $$. Именно таким образом [https://ru.wikipedia.org/wiki/Лотка,_Альфред_Джеймс Альфред Лотка] пришел к [https://sawiki.cs.msu.ru/index.php/%D0%94%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0 динамической системе], которое стало известно
 
как логистическое уравнение, которое после некоторых переобозначений запишется в виде:
 
как логистическое уравнение, которое после некоторых переобозначений запишется в виде:
  
Строка 29: Строка 31:
 
Здесь $$ r $$ и $$K$$ — положительные параметры.
 
Здесь $$ r $$ и $$K$$ — положительные параметры.
  
== Свойства ==
+
== Решение уравнения==
 
Можно заметить, что когда $$ N(t) $$ мало, то $$ \dot N \approx rN $$. Значит, $$N$$ экспоненциально растёт. Параметр
 
Можно заметить, что когда $$ N(t) $$ мало, то $$ \dot N \approx rN $$. Значит, $$N$$ экспоненциально растёт. Параметр
 
$$ K $$ интерпретируется как потенциальная емкость экологической системы, которая определяется доступным наличным количеством ресурсов. Величина $$ K $$ определяет предельное значение численности популяции. Для доказательства этого факта решим логистическое уравнение:
 
$$ K $$ интерпретируется как потенциальная емкость экологической системы, которая определяется доступным наличным количеством ресурсов. Величина $$ K $$ определяет предельное значение численности популяции. Для доказательства этого факта решим логистическое уравнение:
Строка 36: Строка 38:
  
 
\[ -\dfrac{1}{r} \int \dfrac{dN}{\frac{N^2}{K} - N} = \int dt , \]
 
\[ -\dfrac{1}{r} \int \dfrac{dN}{\frac{N^2}{K} - N} = \int dt , \]
 
\[ -\dfrac{1}{r} \int \dfrac{dN}{ \left( \frac{N}{\sqrt{K}} - \frac{1}{2} \sqrt{k} \right)^2 - \frac{1}{4}k} = \int dt . \]
 
  
 
Сделаем замену в правой части равенства: $$ z = \frac{N}{\sqrt{K}} - \frac{1}{2} \sqrt{k}, \ dz = \frac{dN}{\sqrt{k}} $$. Получим
 
Сделаем замену в правой части равенства: $$ z = \frac{N}{\sqrt{K}} - \frac{1}{2} \sqrt{k}, \ dz = \frac{dN}{\sqrt{k}} $$. Получим
Строка 47: Строка 47:
 
\[ \dfrac{z - \frac{1}{2} \sqrt{k} }{z + \frac{1}{2} \sqrt{k}}  = Ce^{-rt} . \]
 
\[ \dfrac{z - \frac{1}{2} \sqrt{k} }{z + \frac{1}{2} \sqrt{k}}  = Ce^{-rt} . \]
  
Возвращаясь к N, получим
+
Возвращаясь к $$N$$, получим
  
\[ 1 - \dfrac{K}{N} = C e^{-rt} ,\]
 
 
\[ N = \dfrac{K}{1 - Ce^{-rt}}. \]
 
\[ N = \dfrac{K}{1 - Ce^{-rt}}. \]
  
 
Найдем $$ C $$ из начального условия $$ N(0) = N_0: \ C = 1 - \frac{K}{N_0}. $$ Окончательно получим
 
Найдем $$ C $$ из начального условия $$ N(0) = N_0: \ C = 1 - \frac{K}{N_0}. $$ Окончательно получим
  
\[ N(t) = \dfrac{K}{1 - \left( 1 - \frac{K}{N_0} \right) e^{-rt} } = \dfrac{K e^{rt} }{e^{rt} - 1 + \frac{K}{N_0}} =  
+
\begin{equation}
\dfrac{N_0 K e^{rt}}{N_0 (e^{rt} - 1) + K} . \]
+
\label{eq2}
 +
N(t) = \dfrac{K}{1 - \left( 1 - \frac{K}{N_0} \right) e^{-rt} } = \dfrac{K e^{rt} }{e^{rt} - 1 + \frac{K}{N_0}} =  
 +
\dfrac{N_0 K e^{rt}}{N_0 (e^{rt} - 1) + K} .  
 +
\end{equation}
 +
 
 +
== Свойства ==
 +
 
 +
[[Файл:KgeqN0.png|мини|справа|Численность популяции при разных начальных условиях. Функция $$N(t)$$ монотонно сходится к параметру $$K$$.]]
 +
 
 +
Это решение для $$ 0 < N_0 < K $$ представляет собой [https://ru.wikipedia.org/wiki/Сигмоида сигмоидальную кривую], которая также часто называют логистической кривой
  
 
Таким образом, $$ N(t) \rightarrow K$$ при $$ t \rightarrow +\infty $$. Тем самым, величина $$ K$$ определяет финальное состояние численности популяции.
 
Таким образом, $$ N(t) \rightarrow K$$ при $$ t \rightarrow +\infty $$. Тем самым, величина $$ K$$ определяет финальное состояние численности популяции.
Строка 63: Строка 71:
 
и ограниченности ресурсов. Существенным недостатком модели является тот факт, что предельная численность популяции вводится в качестве известного параметра, в то время как отыскание этой величины нередко является основной задачей исследования.
 
и ограниченности ресурсов. Существенным недостатком модели является тот факт, что предельная численность популяции вводится в качестве известного параметра, в то время как отыскание этой величины нередко является основной задачей исследования.
  
Проиллюстрируем поведение $$N(t)$$ при $$ N(0) < K, \ N(0) = K, \ N(0) > K $$.
+
== Дискретное логистическое уравнение ==
 +
 
 +
Рассмотрим теперь дискретный вариант логистического уравнения, которое имеет вид
 +
 
 +
\begin{equation}
 +
\label{eq3}
 +
N_{t+1} = r N_t \left( 1 - \dfrac{N_t}{K} \right) , \ \ \ r, K > 0 .
 +
\end{equation}
 +
 
 +
Это уравнение можно получить, используя явную схему дискретизации для логистического уравнения, т.е. заменяя производную по времени на разность
 +
$$ \dot N = \frac{\Delta N}{\Delta t} $$, где $$ \Delta N = N_{t + \Delta t} - N_t$$ . Если мы положим $$ \Delta t = 1 $$, то получим из (\ref{eq1}), что
 +
 
 +
\[ N_{t+1} = N_{t} + r N_t \left( 1 - \dfrac{N_t}{K} \right) , \]
 +
[[Файл:For before diplom6.png|мини|справа|Бифуркационная диаграмма логистического уравнения при $$u_0 = 0.3$$.]]
 +
 
 +
от которого с помощью очевидных переобозначений можно перейти к дискретному логистическому уравнению.
 +
Сделав замену $$ N_t = K u_t $$, уравнение (\ref{eq3}) приводится к виду:
  
[[Файл:KgeqN0.png|30|центр|Логист]]
+
\begin{equation}
 +
\label{eq4}
 +
u_{t+1} = r u_t (1 - u_t) , \ r  > 0 , \ 0 \leq u_t < 1 .  
 +
\end{equation}
  
Мы получили, что функция $$N(t)$$ монотонно сходится к параметру $$K$$ при стремлении времени к бесконечности.
+
Обозначим $$f(u) = r u_t (1 - u_t)$$. Найдём [https://sawiki.cs.msu.ru/index.php/%D0%9D%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D1%8B%D0%B5_%D1%82%D0%BE%D1%87%D0%BA%D0%B8_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B неподвижные точки], приравняв правую часть уравнения к 0: $$ u_1^* = 0, u_2^* = \frac{r-1}{r} $$. Исследуем неподвижные точки на устойчивость. Так как нас интересуют только неотрицательные решения, то вторая неподвижная точка
 +
существует лишь в случае $$ r > 1 $$. Далее имеем, $$ f_u (u) = r - 2ru, \ f_u(u_1^*) = r$$, следовательно, точка $$ u_1^* $$ асимптотически устойчива, если $$ 0 < r < 1 $$, и неустойчива, если $$r > 1$$. Если $$r = 1$$, то $$ f_u(u_1^*) = 1$$. Пусть $$ r > 1 $$, тогда существует вторая неподвижная точка, для которой $$f_u(u_2^*) = 2 - r$$. Следовательно, точка $$u_2^*$$ устойчива, если $$ 1 < r < 3 $$, и неустойчива, если $$r > 3$$. Если $$r = 3$$, то $$f_u(u_2^*) = -1$$.
 +
[[Файл:For before diplom7.png|800px|мини|центр|Демонстрация устойчивости неподвижных точек при разных значениях параметра $$r$$.]]
 +
Построим [https://sawiki.cs.msu.ru/index.php/%D0%91%D0%B8%D1%84%D1%83%D1%80%D0%BA%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B0 бифуркационную диаграмму]. Для этого фиксируем начальное значение $$u_0$$ и для каждого значения параметра $$r$$ на выбранном интервале будем выводить на график значения $$u_t$$ для больших $$t$$. Исходя из бифуркационной диаграммы, при $$r < 1$$ траектория нашей дискретного логистического уравнения сходится к точке $$u_1^*$$. При $$ 1 < r < 3 $$ траектория сходится ко второй особой точке $$u_2^* = \frac{r-1}{r}$$. Далее появляется [https://sawiki.cs.msu.ru/index.php/%D0%A6%D0%B8%D0%BA%D0%BB%D1%8B_%D0%B2_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%D1%85_%D1%81_%D0%B4%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D1%8B%D0%BC_%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%B5%D0%BC._%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A8%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%BE%D0%B3%D0%BE цикл] длины 2, который затем превращается в цикл длины 4, а дальше и вовсе начинается хаос.
  
 
==Список литературы==
 
==Список литературы==

Текущая версия на 02:27, 17 декабря 2023

Логистическое уравнение — уравнение, описывающее численность изолированной популяции в момент времени $$t$$ и имеющее вид \begin{equation} \label{eq1} \dfrac{dN}{dt} = rN \left( 1 - \dfrac{N}{K} \right) , \end{equation}

где $$r, K$$ — положительные параметры модели.

История возникновения

Пусть $$ N(t) $$ — численность изолированной популяции в момент времени $$ t $$. Скорость её изменения может быть представлена в следующем виде

\[ \dot N = \text{рождаемость} - \text{смертность} + \text{миграция} . \]

Вид различных членов в правой части этого уравнения зависит от конкретных условий существования популяций и присущих ей свойств. В простейшем случае предполагается отсутствие миграции, а члены рождаемости и смертности пропорциональны общей численности популяции $$ N $$:

\[ \dot N = bN - cN, \ \ \ \ \ \ \ \Rightarrow \ \ \ \ \ \ \ \dot N = aN, \ a = b - c .\]

Поскольку в действительности наблюдаются стабильные популяции, то необходимо рассматривать математические модели, в которых плотность популяции играет регулирующую роль. Очевидно, что коэффициент размножения в такой модели должен быть не постоянным, а зависящим от численности или плотности. Более точно, математическая модель роста замкнутой популяции имеет вид

\[ \dot N = N \cdot f(N) , \]

где $$ f(N) $$ — коэффициент скорости роста популяции. Разложим $$ f(N) $$ в ряд Тейлора в окрестности нуля и отбросим все члены, кроме первых двух. Получим

\[ \dot N = N(d + eN), \]

где $$ d,e $$ — некоторые постоянные, причем естественно предположить, что $$ d > 0, \ e < 0 $$. Именно таким образом Альфред Лотка пришел к динамической системе, которое стало известно как логистическое уравнение, которое после некоторых переобозначений запишется в виде:

\[ \dot N = rN \left( 1 - \dfrac{N}{K} \right) . \]

Здесь $$ r $$ и $$K$$ — положительные параметры.

Решение уравнения

Можно заметить, что когда $$ N(t) $$ мало, то $$ \dot N \approx rN $$. Значит, $$N$$ экспоненциально растёт. Параметр $$ K $$ интерпретируется как потенциальная емкость экологической системы, которая определяется доступным наличным количеством ресурсов. Величина $$ K $$ определяет предельное значение численности популяции. Для доказательства этого факта решим логистическое уравнение:

\[ \dfrac{dN}{dt} = rN \left( 1 - \dfrac{N}{K} \right), \]

\[ -\dfrac{1}{r} \int \dfrac{dN}{\frac{N^2}{K} - N} = \int dt , \]

Сделаем замену в правой части равенства: $$ z = \frac{N}{\sqrt{K}} - \frac{1}{2} \sqrt{k}, \ dz = \frac{dN}{\sqrt{k}} $$. Получим

\[ - \dfrac{\sqrt{K}}{r} \int \dfrac{dz}{z^2 - \frac{1}{4} k} = \int dt , \]

\[ -\dfrac{1}{r} \ln{ \left| \dfrac{z - \frac{1}{2} \sqrt{k} }{z + \frac{1}{2} \sqrt{k}} \right| } = t + C , \]

\[ \dfrac{z - \frac{1}{2} \sqrt{k} }{z + \frac{1}{2} \sqrt{k}} = Ce^{-rt} . \]

Возвращаясь к $$N$$, получим

\[ N = \dfrac{K}{1 - Ce^{-rt}}. \]

Найдем $$ C $$ из начального условия $$ N(0) = N_0: \ C = 1 - \frac{K}{N_0}. $$ Окончательно получим

\begin{equation} \label{eq2} N(t) = \dfrac{K}{1 - \left( 1 - \frac{K}{N_0} \right) e^{-rt} } = \dfrac{K e^{rt} }{e^{rt} - 1 + \frac{K}{N_0}} = \dfrac{N_0 K e^{rt}}{N_0 (e^{rt} - 1) + K} . \end{equation}

Свойства

Численность популяции при разных начальных условиях. Функция $$N(t)$$ монотонно сходится к параметру $$K$$.

Это решение для $$ 0 < N_0 < K $$ представляет собой сигмоидальную кривую, которая также часто называют логистической кривой

Таким образом, $$ N(t) \rightarrow K$$ при $$ t \rightarrow +\infty $$. Тем самым, величина $$ K$$ определяет финальное состояние численности популяции.

Очевидно, что логистическое уравнение не следует воспринимать буквально как уравнение, управляющее популяционной динамикой реальных систем (например, критику логистического закона роста можно найти в статье автора классического учебника по теории вероятностей В. Феллера [3]). Наиболее правильным представляется использование логистического уравнения как самой простой и удобной формы описания популяции, численность которой стремится к некоторой конечной фиксированной величине. Логистическое уравнение — это первое приближение к описанию численности популяции с плотностно-зависимым регуляторным механизмом, на динамику которой влияют эффекты перенаселения и ограниченности ресурсов. Существенным недостатком модели является тот факт, что предельная численность популяции вводится в качестве известного параметра, в то время как отыскание этой величины нередко является основной задачей исследования.

Дискретное логистическое уравнение

Рассмотрим теперь дискретный вариант логистического уравнения, которое имеет вид

\begin{equation} \label{eq3} N_{t+1} = r N_t \left( 1 - \dfrac{N_t}{K} \right) , \ \ \ r, K > 0 . \end{equation}

Это уравнение можно получить, используя явную схему дискретизации для логистического уравнения, т.е. заменяя производную по времени на разность $$ \dot N = \frac{\Delta N}{\Delta t} $$, где $$ \Delta N = N_{t + \Delta t} - N_t$$ . Если мы положим $$ \Delta t = 1 $$, то получим из (\ref{eq1}), что

\[ N_{t+1} = N_{t} + r N_t \left( 1 - \dfrac{N_t}{K} \right) , \]

Бифуркационная диаграмма логистического уравнения при $$u_0 = 0.3$$.

от которого с помощью очевидных переобозначений можно перейти к дискретному логистическому уравнению. Сделав замену $$ N_t = K u_t $$, уравнение (\ref{eq3}) приводится к виду:

\begin{equation} \label{eq4} u_{t+1} = r u_t (1 - u_t) , \ r > 0 , \ 0 \leq u_t < 1 . \end{equation}

Обозначим $$f(u) = r u_t (1 - u_t)$$. Найдём неподвижные точки, приравняв правую часть уравнения к 0: $$ u_1^* = 0, u_2^* = \frac{r-1}{r} $$. Исследуем неподвижные точки на устойчивость. Так как нас интересуют только неотрицательные решения, то вторая неподвижная точка существует лишь в случае $$ r > 1 $$. Далее имеем, $$ f_u (u) = r - 2ru, \ f_u(u_1^*) = r$$, следовательно, точка $$ u_1^* $$ асимптотически устойчива, если $$ 0 < r < 1 $$, и неустойчива, если $$r > 1$$. Если $$r = 1$$, то $$ f_u(u_1^*) = 1$$. Пусть $$ r > 1 $$, тогда существует вторая неподвижная точка, для которой $$f_u(u_2^*) = 2 - r$$. Следовательно, точка $$u_2^*$$ устойчива, если $$ 1 < r < 3 $$, и неустойчива, если $$r > 3$$. Если $$r = 3$$, то $$f_u(u_2^*) = -1$$.

Демонстрация устойчивости неподвижных точек при разных значениях параметра $$r$$.

Построим бифуркационную диаграмму. Для этого фиксируем начальное значение $$u_0$$ и для каждого значения параметра $$r$$ на выбранном интервале будем выводить на график значения $$u_t$$ для больших $$t$$. Исходя из бифуркационной диаграммы, при $$r < 1$$ траектория нашей дискретного логистического уравнения сходится к точке $$u_1^*$$. При $$ 1 < r < 3 $$ траектория сходится ко второй особой точке $$u_2^* = \frac{r-1}{r}$$. Далее появляется цикл длины 2, который затем превращается в цикл длины 4, а дальше и вовсе начинается хаос.

Список литературы

1. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии 2011.

2. Абрамова В.В. Лекции по курсу "Динамические системы и биоматематика", 2023.

3. Feller W. On the Logistic Law of Growth and Its Empirical Verification in Biology, Acta Biotheoretica, 5, 1940, 51–65.