Задача быстродействия "из множества во множество": различия между версиями
Gleb22 (обсуждение | вклад) |
Gleb22 (обсуждение | вклад) |
||
Строка 16: | Строка 16: | ||
'''Множеством достижимости''' в момент времени \(t\) будем называть \(\mathcal{X}[t] = \mathcal{X}(t, t_0, \mathcal{X}^0) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^0 \in \mathcal{X}^0: x(t, t_0, x^0| u(\cdot)) = x\} = \underset{x^0 \in \mathcal{X}^0}{\cup}\mathcal{X}(t, t_0, x^0)\) | '''Множеством достижимости''' в момент времени \(t\) будем называть \(\mathcal{X}[t] = \mathcal{X}(t, t_0, \mathcal{X}^0) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^0 \in \mathcal{X}^0: x(t, t_0, x^0| u(\cdot)) = x\} = \underset{x^0 \in \mathcal{X}^0}{\cup}\mathcal{X}(t, t_0, x^0)\) | ||
'''Множеством разрешимости''' в момент времени \(t\) будем называть \(\mathcal{W}[t] = \mathcal{W}(t, t_1, \mathcal{X}^1) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^1 \in \mathcal{X}^1: x(t, t_1, x^1| u(\cdot)) = x\} = \underset{x^1 \in \mathcal{X}^1}{\cup}\mathcal{W}(t, t_1, x^1)\) | '''Множеством разрешимости''' в момент времени \(t\) будем называть \(\mathcal{W}[t] = \mathcal{W}(t, t_1, \mathcal{X}^1) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^1 \in \mathcal{X}^1: x(t, t_1, x^1| u(\cdot)) = x\} = \underset{x^1 \in \mathcal{X}^1}{\cup}\mathcal{W}(t, t_1, x^1)\) | ||
+ | Заметим, что \(\mathcal{X}[t_1] \cap\mathcal{W}[t_0]\) содержит в себе оптимальную траекторию (см.рисунок). | ||
+ | === Выпуклость и компактность === | ||
+ | '''Утверждение:''' Множества достижимости и разрешимости - непустые выпуклые компакты. | ||
+ | |||
+ | ''Доказательство:'' Заметим, что: | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | \mathcal{X}\left(t, t_0, \mathcal{X}^0\right) = X(t, t_0)\mathcal{X}^0 + \mathcal{X}(t, t_0, 0), \\ | ||
+ | \mathcal{W}\left(t, t_1, \mathcal{X}^1\right) = X(t, t_1)\mathcal{X}^1 + \mathcal{W}(t, t_1, 0), | ||
+ | \end{cases} | ||
+ | \] | ||
+ | где \(X(t, \tau)\) - фундаментальная матрица Коши[https://sawiki.cs.msu.ru/index.php/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_%D0%9A%D0%BE%D1%88%D0%B8]. | ||
+ | В самом деле, по формуле Коши[https://sawiki.cs.msu.ru/index.php/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9A%D0%BE%D1%88%D0%B8]: | ||
+ | \[ | ||
+ | x(t) = X(t, t_0)x^0 + \int\limits_{t_0}^{t}X(t, \tau)(B(\tau)u(\tau)+f(\tau))d\tau. | ||
+ | \] | ||
+ | Тогда в силу определения множества достижимости через объединение по всем допустимым значениям из исходного множества \(\mathcal{X}^0\) и всем допустимым управлениям \(u(\cdot)\) получаем формулу выше. Аналогичным образом посутпаем с формулой для множества разрешимости. | ||
+ | При решении задачи быстродействия "из точки в точку" доказываются следующие два факта: | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | \mathcal{X}(t, t_0, 0) \in \text{conv}\mathbb{R}^n, \\ | ||
+ | \mathcal{W}(t, t_1, 0) \in \text{conv}\mathbb{R}^n. | ||
+ | \end{cases} | ||
+ | \] | ||
+ | По условию задачи: \(\mathcal{X}^0, \mathcal{X}^1 \in \text{conv}\mathbb{R}^n\). | ||
+ | Тогда: | ||
+ | \[ | ||
+ | X(t, t_0)\mathcal{X}^0 \in \text{conv}\mathbb{R}^n, \\ | ||
+ | X(t, t_1)\mathcal{X}^1 \in \text{conv}\mathbb{R}^n. | ||
+ | \] | ||
+ | Суммируя непустые выпуклые компакты получаем: | ||
+ | \[ | ||
+ | \begin{cases} | ||
+ | X(t, t_0)\mathcal{X}^0 + \mathcal{X}(t, t_0, 0) \in \text{conv}\mathbb{R}^n, \\ | ||
+ | X(t, t_1)\mathcal{X}^1 + \mathcal{W}(t, t_1, 0) \in \text{conv}\mathbb{R}^n, | ||
+ | \end{cases} | ||
+ | \] | ||
+ | что и требовалось. |
Версия 04:19, 11 ноября 2022
Постановка задачи
Задача быстродействия - задача перевода системы из начального фиксированного положения в конечное, также фиксированное, положение за минимальное время. Пусть система определяется условиями: \begin{cases} \dot x(t) = A(t)x(t) + B(t)u(t) + f(t), \\ x(t_0) \in \mathcal{X}^0, x(t_1) \in \mathcal{X}^1, \\ u(t) \in \mathcal{P}(t) \in \text{conv}\mathbb{R}^n, \\ \mathcal{X}^0, \mathcal{X}^1 \in \text{conv}\mathbb{R}^n, \\ t_0 - \text{фиксировано}, \\ t_1 - t_0 \rightarrow \underset{u(\cdot)}{inf}, \end{cases} где \( A(t), B(t), f(t) \) - непрерывны, а \( \mathcal{P} \) непрерывно как многозначное отображение (это требование гарантирует нам, что для любого \( l: \rho(l\vert\mathcal{P}(\tau))\) по \(\tau\) непрерывна\(^1\)).
\(^1\)В частности, при \(m=1\) множество \(\mathcal{P}\) выглядит как \(\mathcal{P}(\tau) = [a(\tau), b(\tau)]\); неперерывность многозначного отображения означает, что \(a(\tau), b(\tau)\) - непрерывны.
Множества достижимости и разрешимости
Множеством достижимости в момент времени \(t\) будем называть \(\mathcal{X}[t] = \mathcal{X}(t, t_0, \mathcal{X}^0) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^0 \in \mathcal{X}^0: x(t, t_0, x^0| u(\cdot)) = x\} = \underset{x^0 \in \mathcal{X}^0}{\cup}\mathcal{X}(t, t_0, x^0)\) Множеством разрешимости в момент времени \(t\) будем называть \(\mathcal{W}[t] = \mathcal{W}(t, t_1, \mathcal{X}^1) = \{x| \exists u(\cdot) - \text{измеримая, т.ч.} \forall \tau \leqslant t: u(\tau) \in \mathcal{P}(\tau), \exists x^1 \in \mathcal{X}^1: x(t, t_1, x^1| u(\cdot)) = x\} = \underset{x^1 \in \mathcal{X}^1}{\cup}\mathcal{W}(t, t_1, x^1)\) Заметим, что \(\mathcal{X}[t_1] \cap\mathcal{W}[t_0]\) содержит в себе оптимальную траекторию (см.рисунок).
Выпуклость и компактность
Утверждение: Множества достижимости и разрешимости - непустые выпуклые компакты.
Доказательство: Заметим, что: \[ \begin{cases} \mathcal{X}\left(t, t_0, \mathcal{X}^0\right) = X(t, t_0)\mathcal{X}^0 + \mathcal{X}(t, t_0, 0), \\ \mathcal{W}\left(t, t_1, \mathcal{X}^1\right) = X(t, t_1)\mathcal{X}^1 + \mathcal{W}(t, t_1, 0), \end{cases} \] где \(X(t, \tau)\) - фундаментальная матрица Коши[1]. В самом деле, по формуле Коши[2]: \[ x(t) = X(t, t_0)x^0 + \int\limits_{t_0}^{t}X(t, \tau)(B(\tau)u(\tau)+f(\tau))d\tau. \] Тогда в силу определения множества достижимости через объединение по всем допустимым значениям из исходного множества \(\mathcal{X}^0\) и всем допустимым управлениям \(u(\cdot)\) получаем формулу выше. Аналогичным образом посутпаем с формулой для множества разрешимости. При решении задачи быстродействия "из точки в точку" доказываются следующие два факта: \[ \begin{cases} \mathcal{X}(t, t_0, 0) \in \text{conv}\mathbb{R}^n, \\ \mathcal{W}(t, t_1, 0) \in \text{conv}\mathbb{R}^n. \end{cases} \] По условию задачи: \(\mathcal{X}^0, \mathcal{X}^1 \in \text{conv}\mathbb{R}^n\). Тогда: \[ X(t, t_0)\mathcal{X}^0 \in \text{conv}\mathbb{R}^n, \\ X(t, t_1)\mathcal{X}^1 \in \text{conv}\mathbb{R}^n. \] Суммируя непустые выпуклые компакты получаем: \[ \begin{cases} X(t, t_0)\mathcal{X}^0 + \mathcal{X}(t, t_0, 0) \in \text{conv}\mathbb{R}^n, \\ X(t, t_1)\mathcal{X}^1 + \mathcal{W}(t, t_1, 0) \in \text{conv}\mathbb{R}^n, \end{cases} \] что и требовалось.