Компактность и предкомпактность: различия между версиями
(Новая страница: «__TOC__ Пусть $$(X, \rho)$$ $$-$$ [https://sawiki.cs.msu.ru/index.php?title=%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%...») |
|||
Строка 1: | Строка 1: | ||
__TOC__ | __TOC__ | ||
− | Пусть $$(X, \rho)$$ $$-$$ | + | Пусть $$(X, \rho)$$ $$-$$ [https://sawiki.cs.msu.ru/index.php/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE метрическое пространство]. |
− | [https://sawiki.cs.msu.ru/index.php | ||
== Определение == | == Определение == | ||
Множество $$A \subset X$$ называется $$\textbf{компактным}$$, если из любой последовательности $$\{x_n\}_{n = 1}^{\infty}$$ его элементов можно выделить сходящуюся подпоследовательность $$\{x_{n_k}\}_{k = 1}^{\infty}$$ к некоторому элементу $$x^{*} \in A$$. | Множество $$A \subset X$$ называется $$\textbf{компактным}$$, если из любой последовательности $$\{x_n\}_{n = 1}^{\infty}$$ его элементов можно выделить сходящуюся подпоследовательность $$\{x_{n_k}\}_{k = 1}^{\infty}$$ к некоторому элементу $$x^{*} \in A$$. | ||
+ | ==Примеры== | ||
+ | $$\underline{Пример \; 1.}$$ Пусть $$X = [0, 1].$$ Тогда $$X - $$ компакт в силу теоремы [https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%91%D0%BE%D0%BB%D1%8C%D1%86%D0%B0%D0%BD%D0%BE_%E2%80%94_%D0%92%D0%B5%D0%B9%D0%B5%D1%80%D1%88%D1%82%D1%80%D0%B0%D1%81%D1%81%D0%B0 Больцано]. | ||
+ | |||
+ | $$\underline{Пример \; 2.}$$ Пусть $$X = E_1 - $$ одномерное [https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE евклидово пространство](числовая прямая). $$X - $$ некомпактно. Действительно, его подмножество $$M = \{1, 2, 3, \ldots, n, \ldots\}$$ не содержит никакой сходящейся последовательности. | ||
+ | |||
== Вспомогательные определения и утверждения == | == Вспомогательные определения и утверждения == | ||
− | * $$\textbf{Лемма Гейне-Бореля.}$$ $$A$$ компактно $$\Leftrightarrow$$ из любого его [https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D1%80%D1%8B%D1%82%D0%B8%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B0 открытого покрытия] можно выделить [https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D1%80%D1%8B%D1%82%D0%B8%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B0 конечное подпокрытие]. | + | * $$\textbf{Определение.}$$ Множество $$A$$ называется $$\textbf{вполне ограниченным}$$, если $$\forall \varepsilon > 0 \; \exists$$ конечная $$\boldsymbol{\varepsilon}\textbf{-сеть}$$ для $$A:$$ т.е. $$\exists \{x_n\}_{n = 1}^{N}, x_n \in X \text{ и } A \subseteq \bigcup_{n = 1}^{N}B_{\varepsilon}(x_n)$$. |
+ | |||
+ | * $$\textbf{Лемма Гейне-Бореля (критерий компактности).}$$ $$A$$ компактно $$\Leftrightarrow$$ из любого его [https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D1%80%D1%8B%D1%82%D0%B8%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B0 открытого покрытия] можно выделить [https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D1%80%D1%8B%D1%82%D0%B8%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%B0 конечное подпокрытие]. | ||
'''Доказательство.''' | '''Доказательство.''' | ||
− | $$\blacksquare$$ | + | $$\Leftarrow$$ Рассмотрим произвольную последовательность $$\{x_n\}$$. Пусть $$X_n = \{x_n, x_{n + 1}, \ldots\}$$. |
+ | # Покажем, что $$\bigcap_{n = 1}^{\infty}\overline{X_n} \neq \varnothing$$. Действительно, пусть это не так, тогда $$M = M \setminus \bigcap_{n = 1}^{\infty}\overline{X_n} = \bigcup_{n = 1}^{\infty}\overline{X_n}\big{(}M \setminus \overline{X_n}\big{)}$$, т.е. открыте множества $$M \setminus \overline{X_n}$$ образуют покрытие пространства $$M$$. По условию $$\exists N: M = \bigcup_{n = 1}^{N}\big{(}M \setminus \overline{X_n}\big{)}$$, следовательно, $$\bigcap_{n = 1}^{\infty}\overline{X_n} = \varnothing$$, что противоречит тому, что $$x_N \in \bigcap_{n = 1}^{N}X_n$$. | ||
+ | # Пусть $$x \in \bigcap_{n = 1}^{\infty}\overline{X_n}$$ (конечно, $$x \in M$$). Возможны следующие случаи: | ||
+ | ## $$x \in X_{n_1}, X_{n_2}, \ldots$$ (бесконечная последовательность): в качестве фундаментальной можно взять стационарную подпоследовательность $$x, x, \ldots$$; | ||
+ | ## $$x \in X_{n_1}, X_{n_2}, \ldots, X_{n_m}: x \notin X_{n_m + 1}, X_{n_m + 2}, \ldots:$$ в этом случае $$x$$ $$-$$ предельная точка для всех $$X_n$$, начиная с номера $$n_m + 1$$, а следовательно, в любой окрестности точки $$x$$ найдется точка из $$X_n$$, что и позволяет выбрать $$\{x_n\}$$ сходящуюся подпоследовательность. | ||
+ | $$\Rightarrow$$ От противного. Пусть $$\{G_{\alpha}\} - $$ открытое покрытие $$M$$, из которого нельзя выделить конечное подпокрытие. Так как $$M$$ компактно, то по теореме Хаусдорфа оно вполне ограничено. Пусть $$\varepsilon_m = 2^{-m}$$. Накроем $$M$$ конечным набором шаров радиуса $$\varepsilon_1$$. По предположению среди них существует шар $$B_1 = B(x_1, \varepsilon_1)$$, из покрытия $$\{G_{\alpha}\}$$ которого нельзя выделить конечное подпокрытие. Накроем $$B_1$$ конечным набором шаров радиуса $$\varepsilon_2$$. Среди них снова найдется шар $$B_2$$, из покрытия $$\{G_{\alpha}\}$$ которого нельзя выделить конечное подпокрытие, и т.д. Видно, что центры шаров $$B_l$$ образую фундаментальную последовательность. В силу компактности $$M$$ эта последовательность сходится; пусть $$y \in M$$ $$-$$ ее предел. Так как $$y$$ содержится в одном из открытых множеств $$\{G_{\alpha}\}$$, то существует шар с центром в $$y$$, содержащийся в $$\{G_{\alpha}\}$$, причем ясно, что все шары $$B_l$$, начиная с некоторого номера, попадают в этот шар $$-$$ противоречие.$$\blacksquare$$ |
Версия 01:08, 15 октября 2023
Пусть $$(X, \rho)$$ $$-$$ метрическое пространство.
Определение
Множество $$A \subset X$$ называется $$\textbf{компактным}$$, если из любой последовательности $$\{x_n\}_{n = 1}^{\infty}$$ его элементов можно выделить сходящуюся подпоследовательность $$\{x_{n_k}\}_{k = 1}^{\infty}$$ к некоторому элементу $$x^{*} \in A$$.
Примеры
$$\underline{Пример \; 1.}$$ Пусть $$X = [0, 1].$$ Тогда $$X - $$ компакт в силу теоремы Больцано.
$$\underline{Пример \; 2.}$$ Пусть $$X = E_1 - $$ одномерное евклидово пространство(числовая прямая). $$X - $$ некомпактно. Действительно, его подмножество $$M = \{1, 2, 3, \ldots, n, \ldots\}$$ не содержит никакой сходящейся последовательности.
Вспомогательные определения и утверждения
- $$\textbf{Определение.}$$ Множество $$A$$ называется $$\textbf{вполне ограниченным}$$, если $$\forall \varepsilon > 0 \; \exists$$ конечная $$\boldsymbol{\varepsilon}\textbf{-сеть}$$ для $$A:$$ т.е. $$\exists \{x_n\}_{n = 1}^{N}, x_n \in X \text{ и } A \subseteq \bigcup_{n = 1}^{N}B_{\varepsilon}(x_n)$$.
- $$\textbf{Лемма Гейне-Бореля (критерий компактности).}$$ $$A$$ компактно $$\Leftrightarrow$$ из любого его открытого покрытия можно выделить конечное подпокрытие.
Доказательство. $$\Leftarrow$$ Рассмотрим произвольную последовательность $$\{x_n\}$$. Пусть $$X_n = \{x_n, x_{n + 1}, \ldots\}$$.
- Покажем, что $$\bigcap_{n = 1}^{\infty}\overline{X_n} \neq \varnothing$$. Действительно, пусть это не так, тогда $$M = M \setminus \bigcap_{n = 1}^{\infty}\overline{X_n} = \bigcup_{n = 1}^{\infty}\overline{X_n}\big{(}M \setminus \overline{X_n}\big{)}$$, т.е. открыте множества $$M \setminus \overline{X_n}$$ образуют покрытие пространства $$M$$. По условию $$\exists N: M = \bigcup_{n = 1}^{N}\big{(}M \setminus \overline{X_n}\big{)}$$, следовательно, $$\bigcap_{n = 1}^{\infty}\overline{X_n} = \varnothing$$, что противоречит тому, что $$x_N \in \bigcap_{n = 1}^{N}X_n$$.
- Пусть $$x \in \bigcap_{n = 1}^{\infty}\overline{X_n}$$ (конечно, $$x \in M$$). Возможны следующие случаи:
- $$x \in X_{n_1}, X_{n_2}, \ldots$$ (бесконечная последовательность): в качестве фундаментальной можно взять стационарную подпоследовательность $$x, x, \ldots$$;
- $$x \in X_{n_1}, X_{n_2}, \ldots, X_{n_m}: x \notin X_{n_m + 1}, X_{n_m + 2}, \ldots:$$ в этом случае $$x$$ $$-$$ предельная точка для всех $$X_n$$, начиная с номера $$n_m + 1$$, а следовательно, в любой окрестности точки $$x$$ найдется точка из $$X_n$$, что и позволяет выбрать $$\{x_n\}$$ сходящуюся подпоследовательность.
$$\Rightarrow$$ От противного. Пусть $$\{G_{\alpha}\} - $$ открытое покрытие $$M$$, из которого нельзя выделить конечное подпокрытие. Так как $$M$$ компактно, то по теореме Хаусдорфа оно вполне ограничено. Пусть $$\varepsilon_m = 2^{-m}$$. Накроем $$M$$ конечным набором шаров радиуса $$\varepsilon_1$$. По предположению среди них существует шар $$B_1 = B(x_1, \varepsilon_1)$$, из покрытия $$\{G_{\alpha}\}$$ которого нельзя выделить конечное подпокрытие. Накроем $$B_1$$ конечным набором шаров радиуса $$\varepsilon_2$$. Среди них снова найдется шар $$B_2$$, из покрытия $$\{G_{\alpha}\}$$ которого нельзя выделить конечное подпокрытие, и т.д. Видно, что центры шаров $$B_l$$ образую фундаментальную последовательность. В силу компактности $$M$$ эта последовательность сходится; пусть $$y \in M$$ $$-$$ ее предел. Так как $$y$$ содержится в одном из открытых множеств $$\{G_{\alpha}\}$$, то существует шар с центром в $$y$$, содержащийся в $$\{G_{\alpha}\}$$, причем ясно, что все шары $$B_l$$, начиная с некоторого номера, попадают в этот шар $$-$$ противоречие.$$\blacksquare$$