Неподвижные точки системы: различия между версиями

Материал из sawiki
Перейти к навигации Перейти к поиску
Строка 95: Строка 95:
 
\end{equation}
 
\end{equation}
 
при любых $$v \geqslant 0, ~r,b > 0$$ имеет хотя бы один корень, а именно $$v=0$$. Второй корень $$v=r^{1/b}-1$$ система может иметь только при значении параметра $$r> 1$$. Больше двух неотрицательных корней система (\ref{sist2}) не имеет.
 
при любых $$v \geqslant 0, ~r,b > 0$$ имеет хотя бы один корень, а именно $$v=0$$. Второй корень $$v=r^{1/b}-1$$ система может иметь только при значении параметра $$r> 1$$. Больше двух неотрицательных корней система (\ref{sist2}) не имеет.
 
 
[[Файл:Fig4staticpoints.jpg|мини|250px|Аттрактор в точке $$v^*=0$$ при параметрах $$r=0.9, b=0.7, v_0=4.$$]]
 
[[Файл:Fig5staticpoints.jpg|мини|250px|Репеллер в точке $$v^*=0$$ при параметрах $$r=2, b=0.9, v_0=2.$$]]
 
  
 
== Пример исследования неподвижных точек на устойчивость ==
 
== Пример исследования неподвижных точек на устойчивость ==

Версия 20:01, 19 декабря 2023

Пусть задана динамическая система:

\begin{equation} \label{sist1} \frac{du}{dt} = f(u),\ u \in U \subseteq \mathbb{R}^n,\ f : U → \mathbb{R}^n, \end{equation}

Определение 1.

Неподвижными точками динамической системы (\ref{sist1}) называются такие точки пространства состояний $$u^{∗}$$, что $$f(u^{∗}) = u^{∗}$$.

Кроме термина "неподвижная точка" используют иногда термины "стационарная точка" или "положение равновесия".

Устойчивость неподвижных точек

Реальная система подвержена внешним воздействиям, она не может находиться все время в одном и том же состоянии. Если немного возмутить состояние системы так, что ее состояние окажется в некоторой окрестности положения равновесия, то возможны следующие сценарии: траектории могут покинуть эту окрестность, остаться в этой окрестности, или приблизиться к положению равновесия. Естественно назвать положение равновесия неустойчивым в первом случае и устойчивым в двух других.

Определение 2.

Неподвижная точка $$u^{*}$$ отображения (\ref{sist1}) называется устойчивой по Ляпунову, если для любого $$\varepsilon > 0$$ существует такое $$\delta > 0$$, что для любых начальных данных $$u(t_0)$$ из $$\delta$$-окрестности точки $$u^{*}$$ вся траектория системы $$u(t)$$ содержится в $$\varepsilon$$-окрестности точки $$u^{*}$$.

$$\forall \varepsilon > 0 ~ \exists \delta(\varepsilon) ~ \forall u(t_0) \in \mathcal{U}_{\delta}(u^{*})$$, $$|u^{*}-u(t)|< \varepsilon, ~\forall t \geqslant t_0$$.

Определение 3.

Неподвижная точка $$u^{*}$$ отображения (\ref{sist1}) называется асимптотически устойчивой, если она является устойчивой по Ляпунову и кроме того $$\displaystyle{\lim_{t\to\infty}} u(t) = u^{*}$$.

Если положение равновесия не является устойчивым, то говорят, что оно неустойчиво. Асимптотически устойчивые неподвижные точки иногда называют аттракторами, а неустойчивые неподвижные точки иногда называют репеллерами.

Теорема 1.

Пусть $$u^{*}$$ — неподвижная точка отображения (\ref{sist1}), т.е. $$u^{*}$$ = $$f(u^{*})$$, и пусть $$f$$ обратима в малой окрестности $$u^{*}$$. Тогда $$u^{*}$$ асимптотически устойчива, если $$|f^{'}(u^{*})| < 1$$, и неустойчива, если $$|f^{'}(u^{*})| > 1$$. Если $$ |f^{'}(u^{*})| = 1$$, то требуются дополнительные исследования.

Доказательство.

Пусть $$|f^{'}(u^{*})| < 1$$ и пусть $$u$$ принадлежит малой окрестности $$u^{*}$$. Так как \[ \displaystyle{\lim_{t\to\infty}} \frac{|f(u)-f(u^{*})|}{|u-u^{*}|}=|f^{'}(u^{*})|, \] поэтому существует такая окрестность $$u^{*}$$, что \[ \frac{|f(u)-f(u^{*})|}{|u-u^{*}|} \leqslant a, \] для всех $$u$$ из этой окрестности; здесь $$a$$ — некоторое число, такое что $$|f^{'}(u^{*})| \leqslant a < 1$$. Таким образом, $$f(u)$$ остается в той же окрестности, что и $$u$$, и, кроме того, ближе к неподвижной точке $$u^{*}$$, по крайней мере, на множитель $$a$$. Отсюда следует, что \[|f(f(u)) − f(f(u^{*}))| \leqslant a |f(u) − f(u^{*})| \leqslant a^2|u − u^{*}|, \] или, по индукции, \[|f^{k}(u) − u^{*}| \leqslant a^{k}|u − u^{*}|, \] где $$f^{k}$$ обозначает $$k$$-ую суперпозицию отображения $$f$$. Таким образом мы доказали, что последовательность $$f^{k}(u)$$ будет сходиться к $$u^{*}$$, то есть является асимптотически устойчивой.

Вторая часть утверждения доказывается сходным образом. $$\blacksquare$$

$$r=30, b=3$$, система имеет два различных неотрицательных корня.
$$r=0.9, b=7$$, система имеет единственный корень $$v=0$$.

Пример поиска неподвижных точек с помощью графического метода

Аттрактор в точке $$v^{*}=r^{1/b}-1$$ при параметрах $$r=10, b=2, v_0=1.$$
Аттрактор в точке $$v^{*}=r^{1/b}-1$$ при параметрах $$r=3, b=0.9, v_0=4.5$$.

Пусть задана система $$v_{t+1} = \frac{r v_t}{(1+ v_t)^b}$$.

Графически неподвижные точки — это точки пересечения графика функции $$f(v)$$ и биссектрисы первого координатного угла $$v_{t+1} = v_{t}$$ (нас интересуют только неотрицательные решения). Для нахождения неподвижных точек заданной системы рассмотрим возможные пересечения графика функции $$f(v)=\frac{rv}{(1+v)^b}$$ с прямой $$g(v)=v$$.

Заметим, что система \begin{equation} \label{sist2} \begin{cases} f(v)=\frac{rv}{(1+v)^b},\\g(v)=v. \end{cases} \end{equation} при любых $$v \geqslant 0, ~r,b > 0$$ имеет хотя бы один корень, а именно $$v=0$$. Второй корень $$v=r^{1/b}-1$$ система может иметь только при значении параметра $$r> 1$$. Больше двух неотрицательных корней система (\ref{sist2}) не имеет.

Пример исследования неподвижных точек на устойчивость

Исследуем на устойчивость неподвижные точки $$v^{*}=r^{1/b}-1$$ и $$v^{*}=0$$ для системы (\ref{sist2}).

\[ f_v(v^{*})=\frac{r((1+v)^b-bv(1+v)^{b-1})}{(1+v)^{2b}}. \]

1. Исследование первой точки $$v^{*}=r^{1/b}-1$$:

Подставим $$v^{*}=r^{1/b}-1$$ в выражение (\ref{sist2}) и с учетом наложенных ограничений $$r>1, b>0$$ для существования точки получим

\[ f_v(v^{*})=b(r^{-1/b}-1)+1. \]

Согласно теореме 1 точка $$v^{*}=r^{1/b}-1$$ будет:

Асимптотически устойчивой, при $$r^{-1/b}<1$$.

Неустойчивой, при $$r^{-1/b}>1$$.

Отметим, что точка $$v^{*}=r^{1/b}-1$$ (отличная от нуля) существует только при значении параметра $$r > 1$$, таким образом $$r^{-1/b}$$ принимает значения меньше единицы при любых $$r> 1$$, значит, точка $$v^{*}=r^{1/b}-1$$ асимптотически устойчива всегда, если она существует.

2. Исследование второй точки $$v^{*}=0$$:

Подставим $$v^{*}=0$$ в выражение (\ref{sist2}) и получим \[ f_v(v^{*})=r. \] Таким образом, по теореме 1, точка $$v^{*}=0$$ будет:

Асимптотически устойчивой, при $$r<1$$.

Неустойчивой, при $$r>1$$.

Связанные теоремы

Теорема 2. (Банах)

Пусть $$(X, d)$$ — полное метрическое пространство с метрикой $$d$$.

Пусть задано отображение $$f : X \rightarrow X$$ и существует число $$a, 0 \leqslant a < 1$$, такое, что для любых $$x, y \in X: d(f(x), f(y)) \leqslant a \cdot d(x, y)$$.

Тогда существует единственная точка $$\xi \in X$$ такая, что $$f(\xi) = \xi$$, и начиная с любой точки $$x_0 \in X$$, последовательность итераций $${f_n(x_0)}_{n=1,2,...}$$ сходится к точке $$\xi$$.

Теорема 3. (Брауэр)

Любое непрерывное отображение замкнутого шара в себя в конечномерном евклидовом пространстве имеет неподвижную точку.

Более подробно, рассмотрим замкнутый шар в $$n$$-мерном пространстве \(B^n\subset \mathbb R^n\). Пусть \(f \colon B^n\to B^n\) — некоторое непрерывное отображение этого шара в себя (не обязательно строго внутрь себя, не обязательно биективное, т.е. даже не обязательно сюръективное). Тогда найдется такая точка \(x\in B^n\), что \(f(x)=x\).

Теорема 4. (Шаудер — Тихонов)

В локально выпуклом топологическом векторном пространстве любое непрерывное отображение $$f : K\to K$$ выпуклого компактного множества $$K$$ в себя имеет неподвижную точку.

Список литературы

1. Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии, 2011.

2. Абрамова В.В. Лекции по курсу "Динамические системы и биоматематика", 2023.

3. Banach S. Sur les opérations dans les ensembles abstraits et leur applications aux équations integrales, Fund. Math, 1922

4. Шашкин Ю.А. Неподвижные точки, М.: Наука, 1989

5. J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2, 1930